14 research outputs found

    Plasma nitriding and nitrocarburising of a supermartensitic stainless steel

    No full text
    Supermartensitic stainless steels (SMSSs) are a new generation of the classic 13%Cr martensitic steels, lower in carbon and with additional alloying of nickel and molybdenum offering better weldabilty and low temperature toughness. Several works have shown that plasma nitriding and nitrocarburising of stainless steels at low temperatures produces a hard surface layer which results in increased wear resistance. In this work, SMSS samples were plasma nitrided and nitrocarburised at 400, 450 and 500 °C. The plasma treated SMSS samples were characterised by means of optical microscopy, microhardness, X-ray diffraction and dry wear tests. The thickness of the layers produced increases as temperature is raised, for both plasma nitriding and nitrocarburising. X-ray diffraction demonstrates that the chromium nitride content grows with temperature for nitriding and nitrocarburising, which also showed increasing content of iron and chromium carbides with temperature. After plasma treating, it was found that the wear volume decreases for all temperatures and the wear resistance increased as the treatment temperature was raised. The main wear mechanism observed for both treated and untreated samples was grooving abrasion. © 2012 IHTSE Partnership Published by Maney on behalf of the Partnership

    Characterization of Niobium Carbide Layers Produced in Ductile Cast Iron Using Thermo-Reactive Treatments

    No full text
    Ductile cast irons are materials with good ductility and toughness, but they are susceptible to high wear rates since they have low hardness. One way to increase their wear resistance is through thermo-reactive diffusion treatments (TRD), in which carbide layers are produced on the surface of the material. In this study, two ductile cast irons (with and without the addition of copper) were treated in a salt bath composed of borax, ferroniobium (16 wt.%) and aluminum (3 wt.%) at 1000°C for 4 h. The XRD and micro-hardness analysis indicated that NbC layers were produced with hardness values higher than 2000 HV. Two methods were used to examine the adherence of the layer to the substrate. In the first method, indentations were performed using Rockwell C scale (VDI 3198). The second method used Vickers micro-hardness indentations (loads 100, 200, and 300 gf) at the interface layer/substrate. In both tests, the layers showed good adhesion to substrates. The 3198 VDI test also showed that the NbC layer produced good toughness. The results of micro-adhesive and micro-abrasive wear tests showed that the layer was very effective in increasing wear resistance

    Production and heat treatment of cast graphitic steels with additions of niobium

    No full text
    The optimal combination of the mechanical characteristics of austempered spheroidal graphitic cast steel together with modern casting techniques yielded an economically promising product. The maximum potential of the usage of these steels is related to fabrication and characterization techniques, among which, one of the most important is the cooling diagram (TTT curve). In this work, 3 heats of graphitic steels with the following nominal compositions were cast: 1.0 % C, 2.3 % Si, 0.4 % Mn, and with niobium contents of. 0.0 %, 0.5 % and 1.0 %. TTT curves were determined by dilatometric testing and test specimens of these steels were austempered. The samples were then characterized by hardness testing and optical and SEM microscopy. Tensile, impact (no notch) and wear testing were also performed. The addition of niobium produced significant alterations in the TTT diagrams. Increasing niobium content moves the pearlite transformation nose to the right and the bainitic transformation nose to the left. Tensile strength of these alloys was high, in the range of 1700 MPa and impact values were around of 45 Joules for alloy with 1 % Nb, 49 Joules for alloy with 0.5 % Nb and fracture did not occur for the alloy without the addition of Nb

    Evaluation of austenitic-ferritic stainless steel wires for orthodontic applications

    No full text
    Several studies have shown that austenitic stainless steels are suitable for use in the final phases of orthodontic treatments, such as finishing and retention. These steels demonstrate appropriate mechanical properties, such as high ultimate tensile strength and good corrosion resistance. A new class of materials, the austenic-ferritic stainless steels, is substituting for austenitic stainless steels in several industrial applications where these properties are necessary. This work supports the hypothesis that orthodontic wires of austenic-ferritic stainless steels can replace austenitic stainless steels. The advantages are cost reduction and decrease of the nickel hypersensitivity effect in patients undergoing orthodontic treatments. The object of this study was to evaluate wires of austenitic-ferritic stainless steel SEW 410 Nr. 14517 (Cr26Ni6Mo3Cu3) produced by cold working through rolling and drawing processes. Tests were performed to evaluate the ultimate tensile strength, hardness, ductility, and formability. In accordance with technical standards the wires exhibited ultimate tensile strength and ductility suitable for orthodontic clinical applications. These austenitie-ferritic wires can be an alternative to substitute the common commercial wires of austenic stainless steels with the advantage of decreasing the nickel content

    Production and characterization of boride layers on AISI D2 tool steel

    No full text
    AISI D2 is the most commonly used cold-work tool steel of its grade. It offers high hardenability, low distortion after quenching, high resistance to softening and good wear resistance. The use of appropriate hard coatings on this steel can further improve its wear resistance. Boronizing is a surface treatment of Boron diffusion into the substrate. In this work boride layers were formed on AISI D2 steel using borax baths containing iron-titanium and aluminium, at 800 degrees C and 1000 degrees C during 4 h. The borided treated steel was characterized by optical microscopy, Vickers microhardness, X-ray diffraction (XRD) and glow discharge optical spectroscopy (GDOS) to verify the effect of the bath compositions and treatment temperatures in the layer formation. Depending on the bath composition, Fe(2)B or FeB was the predominant phase in the boride layers. The layers exhibited ""saw-tooth"" morphology at the substrate interface; layer thicknesses varied from 60 to 120 mu m, and hardness in the range of 1596-1744 HV were obtained. (C) 2009 Elsevier Ltd. All rights reserved.CNPq - National Council of Scientific and Technological Development[141.395/2001-0

    Characterization and Wear Performance of Borided AISI 304 and UNS S31254 Stainless Steels

    No full text
    Austenitic stainless steels form the largest family of alloys in terms of number and applications. They are characterized by having good toughness, weldability, cold formability, and corrosion resistance in various situations. However, because they cannot harden by heat treatment, they exhibit low wear resistance. Suitable coatings can increase their wear resistance and expand their usability range. Boride coatings, with their high hardness and wear resistance are a good candidate for this purpose. In this work, samples of stainless steels, AISI 304 and UNS S31254, were subjected to liquid boriding at 950°C for 2 and 4 h. Optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness tests were performed, along with tests for micro-adhesive wear (fixed-ball type). The boriding treatment resulted in the formation of layers with high hardness, in the range of 1800 to 2000 HV, which is typical for boride layers. Micro-adhesive wear tests demonstrated the great increase in wear resistance obtained through this treatment

    Formation of silver chloride nanocrystals as a corrosion product of silver in H2SO4 solution

    No full text
    The purpose of this study is to characterize the corrosion product on the surface of silver, employing H2SO4 (0.5M) as electrolyte. The electrochemical parameters, Ecor, Icor, V cor and Rp were obtained after analyzing the potentiodynamic polarization curve in which two peaks were observed. The smallest (passive region) is attributed to the Cl- traces from the reference electrode, with micro-cracks. The second peak (in the transpassivation region) corresponds to the polarization curve of silver in H2SO 4 without contaminants. SEM images and EDS analysis reveal images of a surface layer on silver, consisting of structures containing sulfur, oxygen, silver and chloride, as the corrosion product. On this layer silver sulfate crystals were observed, which occurs during the formation of silver chloride nanocrystals with different morphologies, when chloride ions were added to the electrolyte medium. ©The Electrochemical Society

    Effect of binders and surface finish on wear resistance of HVOF coatings

    No full text
    The high velocity oxygen fuel (HVOF) thermal spray process produces highly wear and/or corrosion resistant coatings. Tungsten carbide with a metallic binder is often used for this purpose. In this work, tungsten carbide coatings containing cobalt or nickel binder were produced by HVOF and characterised by optical and electron microscopy, hardness and a dry sand/rubber wheel abrasion test. The HVOF process produced dense coatings with low porosity levels and high hardness. The wear resistance of the specimens, which were surface treated, increased as the roughness percentage decreased. Tungsten carbide nickel based coating yielded the best wear resistance in the as sprayed condition. However, the wear rate and wear of the two coatings converged to the same values as the number of revolutions increased. Wear behaviour in the ground condition was similar, although the tungsten carbide cobalt based coating yielded better performance with increasing distance travelled during the wear test
    corecore