1,144 research outputs found
Damping of Oscillations in Layer-by-Layer Growth
We present a theory for the damping of layer-by-layer growth oscillations in
molecular beam epitaxy. The surface becomes rough on distances larger than a
layer coherence length which is substantially larger than the diffusion length.
The damping time can be calculated by a comparison of the competing roughening
and smoothening mechanisms. The dependence on the growth conditions,
temperature and deposition rate, is characterized by a power law. The
theoretical results are confirmed by computer simulations.Comment: 19 pages, RevTex, 5 Postscript figures, needs psfig.st
Unjamming of Granular Packings due to Local Perturbations: Stability and Decay of Displacements
We study the mechanical response generated by local deformations in jammed
packings of rigid disks. Based on discrete element simulations we determine the
critical force of the local perturbation that is needed to break the mechanical
equilibrium and examine the generated displacement field. Displacements decay
as a power law of the distance from the perturbation point. The decay exponent
and the critical force exhibit nontrivial dependence on the friction: Both
quantities are nonmonotonic and have a sharp maximum at the friction
coefficient 0.1. We find that the mechanical response properties are closely
related to the problem of force-indeterminacy where similar nonmonotonic
behavior was observed previously. We establish direct connection between the
critical force and the ensemble of static force networks.Comment: 4 pages, 4 figure
Extent of force indeterminacy in packings of frictional rigid disks
Static packings of frictional rigid particles are investigated by means of
discrete element simulations. We explore the ensemble of allowed force
realizations in the space of contact forces for a given packing structure. We
estimate the extent of force indeterminacy with different methods. The
indeterminacy exhibits a nonmonotonic dependence on the interparticle friction
coefficient. We verify directly that larger force-indeterminacy is accompanied
by a more robust behavior against local perturbations. We also investigate the
local indeterminacy of individual contact forces. The probability distribution
of local indeterminacy changes its shape depending on friction. We find that
local indeterminacy tends to be larger on force chains for intermediate
friction. This correlation disappears in the large friction limit.Comment: 5 pages, 6 figure
Pore Stabilization in Cohesive Granular Systems
Cohesive powders tend to form porous aggregates which can be compacted by
applying an external pressure. This process is modelled using the Contact
Dynamics method supplemented with a cohesion law and rolling friction. Starting
with ballistic deposits of varying density, we investigate how the porosity of
the compacted sample depends on the cohesion strength and the friction
coefficients. This allows to explain different pore stabilization mechanisms.
The final porosity depends on the cohesion force scaled by the external
pressure and on the lateral distance between branches of the ballistic deposit
r_capt. Even if cohesion is switched off, pores can be stabilized by Coulomb
friction alone. This effect is weak for round particles, as long as the
friction coefficient is smaller than 1. However, for nonspherical particles the
effect is much stronger.Comment: 10 pages, 15 figure
- …