515 research outputs found

    Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy

    Get PDF
    Although the mechanical behavior of tendon and bone has been studied for decades, there is still relatively little understanding of the molecular basis for their specific properties. Thus, despite consisting structurally of the same type I collagen, bones and tendons have evolved to fulfill quite different functions in living organisms. In an attempt to understand the links between the mechanical properties of these collageneous structures at the macro- and nanoscale, we studied trimeric type I tropocollagen molecules by atomic force microscopy, both topologically and by force spectroscopy. High-resolution imaging demonstrated a mean (± SD) contour length of (287 ± 35) nm and height of (0.21 ± 0.03) nm. Submolecular features, namely the coil-pitch of the molecule, were also observed, appearing as a repeat pattern along the length of the molecule, with a length of ~8 nm that is comparable to the theoretical value. Using force spectroscopy, we established the stretching pattern of the molecule, where both the mechanical response of the molecule and pull-off peak are convoluted in a single feature. By interpreting this response with a wormlike chain model, we extracted the value of the effective contour length of the molecule at (202 ± 5) nm. This value was smaller than that given by direct measurement, suggesting that the entire molecule was not being stretched during the force measurements; this is likely to be related to the absence of covalent binding between probe, sample, and substrate in our experimental procedure

    Influence of biomaterial nanotopography on the adhesive and elastic properties of Staphylococcus aureus cells

    Get PDF
    Despite the well-known beneficial effects of biomaterial nanopatterning on host tissue integration, the influence of controlled nanoscale topography on bacterial colonisation and infection remains unknown. Therefore, the aim of the present study was to determine the nanoscale effect of surface nanopatterning on biomaterial colonisation by S. aureus, utilising AFM nanomechanics and single-cell force spectroscopy (SCFS). Nanoindentation of S. aureus bound to planar (PL) and nanopatterned (SQ) polycarbonate (PC) surfaces suggested two distinct areas of mechanical properties, consistent with a central bacterial cell surrounded by a capsullar component. Nevertheless, no differences in elastic moduli were found between bacteria bound to PL and SQ, suggesting a minor role of nanopatterning in bacterial cell elasticity. Furthermore, SCFS demonstrated increased adhesion forces and work between S. aureus and SQ surfaces at 0 s and 1 s contact times. Although WLC modelling showed similarities in contour lengths for attachment to both surfaces, Poisson analysis suggests increased short-range forces for the S. aureus–SQ interactions. In the case of S. aureus–PL, long-range forces were found to not only be dominant but also repulsive in nature, which may help explain the reduced adhesion forces observed during AFM probing. In conclusion, although surface nanopatterning does not significantly influence the elasticity of attached bacterial cells, it was found to promote the early-adhesion of S. aureus cells to the biomaterial surface

    Characterization of dentine to assess bond strength of dental composites

    Get PDF
    This study was performed to develop alternating dentine adhesion models that could help in the evaluation of a self-bonding dental composite. For this purpose dentine from human and ivory was characterized chemically and microscopically before and after acid etching using Raman and SEM. Mechanical properties of dentine were determined using 3 point bend test. Composite bonding to dentine, with and without use of acid pre-treatment and/or the adhesive, were assessed using a shear bond test. Furthermore, micro gap formation after restoration of 3 mm diameter cavities in dentine was assessed by SEM. Initial hydroxyapatite level in ivory was half that in human dentine. Surface hydroxyapatites decreased by approximately half with every 23 s of acid etch. The human dentine strength (56 MPa) was approximately double that of ivory, while the modulus was almost comparable to that of ivory. With adhesive use, average shear bond strengths were 30 and 26 MPa with and without acid etching. With no adhesive, average bond strength was 6 MPa for conventional composites. This, however, increased to 14 MPa with a commercial flowable "self-bonding" composite or upon addition of low levels of an acidic monomer to the experimental composite. The acidic monomer additionally reduced micro-gap formation with the experimental composite. Improved bonding and mechanical properties should reduce composite failures due to recurrent caries or fracture respectively

    Multimodal optical characterisation of collagen photodegradation by femtosecond infrared laser ablation.

    Get PDF
    Collagen is a structural component of the human body, as a connective tissue it can become altered as a result of pathophysiological conditions. Although the collagen degradation mechanism is not fully understood, it plays an important role in ageing, disease progression and applications in therapeutic laser treatments. To fully understand the mechanism of collagen alteration, in our study photo-disruptive effects were induced in collagen I matrix by point-irradiation with a femtosecond Ti-sapphire laser under controlled laser ablation settings. This was followed by multi-modal imaging of the irradiated and surrounding areas to analyse the degradation mechanism. Our multi-modal methodology was based on second harmonic generation (SHG), scanning electron microscope (SEM), autofluorescence (AF) average intensities and the average fluorescence lifetime. This allowed us to quantitatively characterise the degraded area into four distinct zones: (1) depolymerised zone in the laser focal spot as indicated by the loss of SHG signal, (2) enhanced crosslinking zone in the inner boundary of the laser induced cavity as represented by the high fluorescence ring, (3) reduced crosslinking zone formed the outer boundary of the cavity as marked by the increased SHG signal and (4) native collagen. These identified distinct zones were in good agreement with the expected photochemical changes shown using Raman spectroscopy. In addition, imaging using polarisation-resolved SHG (p-SHG) revealed both a high degree of fibre re-orientation and a SHG change in tensor ratios around the irradiation spot. Our multi-modal optical imaging approach can provide a new methodology for defining distinct zones that can be used in a clinical setting to determine suitable thresholds for applying safe laser treatments without affecting the surrounding tissues. Furthermore this technique can be extended to address challenges observed in collagen based tissue engineering and used as a minimally invasive diagnostic tool to characterise diseased and non-diseased collagen rich tissues

    Probing the nanoadhesion of Streptococcus sanguinis to titanium implant surfaces by atomic force microscopy

    Get PDF
    The authors would kindly like to thank the BecasChile PhD Scholarship Programme for funding this research

    Mesenchymal stem cell response to topographically modified CoCrMo

    Get PDF
    Surface roughness on implant materials has been shown to be highly influential on the behavior of osteogenic cells. Four surface topographies were engineered on cobalt chromium molybdenum (CoCrMo) in order to examine this influence on human mesenchymal stem cells (MSC). These treatments were smooth polished (SMO), acid etched (AE) using HCl 7.4% and H2 SO4 76% followed by HNO3 30%, sand blasted, and acid etched using either 50 μm Al2 O3 (SLA50) or 250 μm Al2 O3 grit (SLA250). Characterization of the surfaces included energy dispersive X-ray analysis (EDX), contact angle, and surface roughness analysis. Human MSCs were cultured onto the four CoCrMo substrates and markers of cell attachment, retention, proliferation, cytotoxicity, and osteogenic differentiation were studied. Residual aluminum was observed on both SLA surfaces although this appeared to be more widely spread on SLA50, whilst SLA250 was shown to have the roughest topography with an Ra value greater than 1 μm. All substrates were shown to be largely non-cytotoxic although both SLA surfaces were shown to reduce cell attachment, whilst SLA50 also delayed cell proliferation. In contrast, SLA250 stimulated a good rate of proliferation resulting in the largest cell population by day 21. In addition, SLA250 stimulated enhanced cell retention, calcium deposition, and hydroxyapatite formation compared to SMO (p < 0.05). The enhanced response stimulated by SLA250 surface modification may prove advantageous for increasing the bioactivity of implants formed of CoCrMo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2015

    The mechanobiology of tendon fibroblasts under static and uniaxial cyclic load in a 3D tissue engineered model mimicking native ECM

    Get PDF
    Tendon mechanobiology plays a vital role in tendon repair and regeneration; however, this mechanism is currently poorly understood. We tested the role of different mechanical loads on extracellular matrix (ECM) remodelling gene expression and the morphology of tendon fibroblasts in collagen hydrogels, designed to mimic native tissue. Hydrogels were subjected to precise static or uniaxial loading patterns of known magnitudes and sampled to analyse gene expression of known mechano‐responsive ECM‐associated genes (Collagen I, Collagen III, Tenomodulin, and TGF‐β). Tendon fibroblast cytomechanics was studied under load by using a tension culture force monitor, with immunofluorescence and immunohistological staining used to examine cell morphology. Tendon fibroblasts subjected to cyclic load showed that endogenous matrix tension was maintained, with significant concomitant upregulation of ECM remodelling genes, Collagen I, Collagen III, Tenomodulin, and TGF‐β when compared with static load and control samples. These data indicate that tendon fibroblasts acutely adapt to the mechanical forces placed upon them, transmitting forces across the ECM without losing mechanical dynamism. This model demonstrates cell‐material (ECM) interaction and remodelling in preclinical a platform, which can be used as a screening tool to understand tendon regeneration

    Reprogramming bone progenitor identity and potency through control of collagen density and oxygen tension

    Get PDF
    The biophysical microenvironment of the cell is being increasingly used to control cell signaling and to direct cell function. Herein, engineered 3D tuneable biomimetic scaffolds are used to control the cell microenvironment of Adipose-derived Mesenchymal Stromal Cells (AMSC), which exhibit a collagen density-specific profile for early and late stage bone cell lineage status. Cell potency was enhanced when AMSCs were cultured within low collagen density environments in hypoxic conditions. A transitional culture containing varied collagen densities in hypoxic conditions directed differential cell fate responses. The early skeletal progenitor identity (PDPN+CD146−CD73+CD164+) was rescued in the cells which migrated into low collagen density gels, with cells continuously exposed to the high collagen density gels displaying a transitioned bone-cartilage-stromal phenotype (PDPN+CD146+CD73−CD164-). This study uncovers the significant contributions of the physical and physiological cell environment and highlights a chemically independent methodology for reprogramming and isolating skeletal progenitor cells from an adipose-derived cell population

    Influence of biomaterial nanotopography on the adhesive and elastic properties of Staphylococcus aureus cells

    Get PDF
    Despite the well-known beneficial effects of biomaterial nanopatterning on host tissue integration, the influence of controlled nanoscale topography on bacterial colonisation and infection remains unknown. Therefore, the aim of the present study was to determine the nanoscale effect of surface nanopatterning on biomaterial colonisation by S. aureus, utilising AFM nanomechanics and single-cell force spectroscopy (SCFS). Nanoindentation of S. aureus bound to planar (PL) and nanopatterned (SQ) polycarbonate (PC) surfaces suggested two distinct areas of mechanical properties, consistent with a central bacterial cell surrounded by a capsullar component. Nevertheless, no differences in elastic moduli were found between bacteria bound to PL and SQ, suggesting a minor role of nanopatterning in bacterial cell elasticity. Furthermore, SCFS demonstrated increased adhesion forces and work between S. aureus and SQ surfaces at 0 s and 1 s contact times. Although WLC modelling showed similarities in contour lengths for attachment to both surfaces, Poisson analysis suggests increased short-range forces for the S. aureus–SQ interactions. In the case of S. aureus–PL, long-range forces were found to not only be dominant but also repulsive in nature, which may help explain the reduced adhesion forces observed during AFM probing. In conclusion, although surface nanopatterning does not significantly influence the elasticity of attached bacterial cells, it was found to promote the early-adhesion of S. aureus cells to the biomaterial surface
    corecore