4 research outputs found

    Up-regulation of leucine aminopeptidase-A in cadmium-treated tomato roots

    No full text
    The effects of cadmium (Cd) on aminopeptidase (AP) activities and Leucine-AP (LAP) expression were investigated in the roots of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 10 days in the presence of 0.3-300 ÎŒM Cd and compared to control plants grown in the absence of Cd. AP activities were measured using six different p-nitroanilide (p-NA) substrates. Leu, Met, Arg, Pro and Lys hydrolyzing activities increased in roots of Cd-treated plants, while Phe-pNA cleavage was not enhanced after Cd treatments. The use of peptidase inhibitors showed that most of the Leu-pNA hydrolyzing activity was related to one or several metallo-APs. Changes in Lap transcripts, protein and activities were measured in the roots of 0 and 30-ÎŒM Cd-treated plants. LapA transcript levels increased in Cd-treated roots, whereas LapN RNAs levels were not modified. To assess amount of Leu-pNA hydrolyzing activity associated with the hexameric LAPs, LAP activity was measured following immunoprecipitation with a LAP polyclonal antiserum. LAP activity increased in Cd-treated roots. There was a corresponding increase in LAP-A protein levels detected in 2D-immunoblots. The role of LAP-A in the proteolytic response to Cd stress is discussed

    Phytoplasma Genomes: Evolution Through Mutually Complementary Mechanisms, Gene Loss and Horizontal Acquisition

    No full text
    corecore