528 research outputs found

    Optokinetic stimulation rehabilitation in preventing seasickness

    Get PDF
    SummaryObjectivesSeasickness occurs when traveling on a boat: symptoms such as vomiting are very disturbing and may be responsible for discontinuing travel or occupation and can become life-threatening. The failure of classical treatment to prevent seasickness has motivated this retrospective study exploring optokinetic stimulation in reducing these symptoms.Patients and methodsExperimental training of 75 sailors with optokinetic stimulation attempted to reduce seasickness manifestations and determine the factors that could predict accommodation problems.ResultsEighty percent of the trained subjects were able to return on board. No predictive factors such as sex, occupation, degree of illness, number of treatment sessions, time to follow-up, and age were found to influence training efficacy.ConclusionOptokinetic stimulation appears to be promising in the treatment of seasickness. Nevertheless, statistically significant results have yet to demonstrate its efficacy

    Quantitative constraints on the atmospheric chemistry of nitrogen oxides: An analysis along chemical coordinates

    Get PDF
    In situ observations Of NO_2, NO, NO_y, ClONO_2, OH, O_3, aerosol surface area, spectrally resolved solar radiation, pressure and temperature obtained from the ER-2 aircraft during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) experiments are used to examine the factors controlling the fast photochemistry connecting NO and NO_2 and the slower chemistry connecting NO_x and HNO_3. Our analysis uses “chemical coordinates” to examine gradients of the difference between a model and precisely calibrated measurements to provide a quantitative assessment of the accuracy of current photochemical models. The NO/NO_2 analysis suggests that reducing the activation energy for the NO+O_3 reaction by 1.7 kJ/mol will improve model representation of the temperature dependence of the NO/NO_2 ratio in the range 215–235 K. The NO_x/HNO_3 analysis shows that systematic errors in the relative rate coefficients used to describe NO_x loss by the reaction OH + NO_2 → HNO_3 and by the reaction set NO_2 + O_3 → NO_3; NO_2 + NO_3 → N_(2)O_5; N_(2)O_5 + H_(2)O → 2HNO_3 are in error by +8.4% (+30/−45%) (OH+NO_2 too fast) in models using the Jet Propulsion Laboratory 1997 recommendations [DeMore et al., 1997]. Models that use recommendations for OH+NO2 and OH+HNO_3 based on reanalysis of recent and past laboratory measurements are in error by 1.2% (+30/−45%) (OH+NO_2 too slow). The +30%/−45% error limit reflects systematic uncertainties, while the statistical uncertainty is 0.65%. This analysis also shows that the POLARIS observations only modestly constrain the relative rates of the major NO_x production reactions HNO3 + OH → H_(2)O + NO_3 and HNO_3 + hν → OH + NO_2. Even under the assumption that all other aspects of the model are perfect, the POLARIS observations only constrain the rate coefficient for OH+HNO_3 to a range of 65% around the currently recommended value

    Comparison of modeled and observed values of NO_2 and JNO_2 during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission

    Get PDF
    Stratospheric measurements of NO, NO_(2), O_(3), ClO, and HO_(2) were made during spring, early summer, and late summer in the Arctic region during 1997 as part of the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) field campaign. In the sunlit atmosphere, NO_(2) and NO are in steady state through NO2 photolysis and reactions involving O_(3), ClO, BrO, and HO_(2). By combining observations of O_(3), ClO, and HO_(2), observed and modeled values of the NO_(2) photolysis rate coefficient (JNO_(2)), and model estimates of BrO, several comparisons are made between steady state and measured values of both NO_(2) and JNO_(2). An apparent seasonal dependence in discrepancies between calculated and measured values was found; however, a source for this dependence could not be identified. Overall, the mean linear fits in the various comparisons show agreement within 19%, well within the combined uncertainties (±50 to 70%). These results suggest that photochemistry controlling the NO_(2)/NO abundance ratio is well represented throughout much of the sunlit lower stratosphere. A reduction in the uncertainty of laboratory determinations of the rate coefficient of NO + O_(3) → NO_(2) + O_(2) would aid future analyses of these or similar atmospheric observations

    Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO_2]/[HCl] during POLARIS

    Get PDF
    We examine inorganic chlorine (Cl_y,) partitioning in the summer lower stratosphere using in situ ER-2 aircraft observations made during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) campaign. New steady state and numerical models estimate [ClONO_2]/[HCl] using currently accepted photochemistry. These models are tightly constrained by observations with OH (parameterized as a function of solar zenith angle) substituting for modeled HO_2 chemistry. We find that inorganic chlorine photochemistry alone overestimates observed [ClONO_2]/[HCl] by approximately 55–60% at mid and high latitudes. On the basis of POLARIS studies of the inorganic chlorine budget, [ClO]/[ClONO_2], and an intercomparison with balloon observations, the most direct explanation for the model-measurement discrepancy in Cl_y, partitioning is an error in the reactions, rate constants, and measured species concentrations linking HCl and ClO (simulated [ClO]/[HCl] too high) in combination with a possible systematic error in the ER-2 ClONO_2 measurement (too low). The high precision of our simulation (±15% 1σ for [ClONO_2]/[HCl], which is compared with observations) increases confidence in the observations, photolysis calculations, and laboratory rate constants. These results, along with other findings, should lead to improvements in both the accuracy and precision of stratospheric photochemical models

    Understanding the Relationship Between Perceived Quality Cues and Quality Attributes in the Purchase of Meat in Malaysia

    Get PDF
    This study utilizes the Total Food Quality Model to gain a better understanding of how Malaysian consumers make their decision to purchase fresh/chilled meat. We examine the association between quality cues and desired values (quality attributes) with regard to food that is guaranteed Halal, safe to eat, healthy and nutritious, has a good taste, represents good value for money, and is produced in a way that protects the environment and worker welfare. The findings reveal that different quality cues assume different levels of importance when pursuing different desired values

    Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases

    Get PDF
    For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient’s data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe

    Lamin A/C truncation in dilated cardiomyopathy with conduction disease

    Get PDF
    BACKGROUND: Mutations in the gene encoding the nuclear membrane protein lamin A/C have been associated with at least 7 distinct diseases including autosomal dominant dilated cardiomyopathy with conduction system disease, autosomal dominant and recessive Emery Dreifuss Muscular Dystrophy, limb girdle muscular dystrophy type 1B, autosomal recessive type 2 Charcot Marie Tooth, mandibuloacral dysplasia, familial partial lipodystrophy and Hutchinson-Gilford progeria. METHODS: We used mutation detection to evaluate the lamin A/C gene in a 45 year-old woman with familial dilated cardiomyopathy and conduction system disease whose family has been well characterized for this phenotype [1]. RESULTS: DNA from the proband was analyzed, and a novel 2 base-pair deletion c.908_909delCT in LMNA was identified. CONCLUSIONS: Mutations in the gene encoding lamin A/C can lead to significant cardiac conduction system disease that can be successfully treated with pacemakers and/or defibrillators. Genetic screening can help assess risk for arrhythmia and need for device implantation

    A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: Building a Treatabolome

    Get PDF
    Background: Rare diseases are individually rare but globally affect around 6% of the population, and in over 70% of cases are genetically determined. Their rarity translates into a delayed diagnosis, with 25% of patients waiting 5 to 30 years for one. It is essential to raise awareness of patients and clinicians of existing gene and variant-specific therapeutics at the time of diagnosis to avoid that treatment delays add up to the diagnostic odyssey of rare diseases' patients and their families. Aims: This paper aims to provide guidance and give detailed instructions on how to write homogeneous systematic reviews of rare diseases' treatments in a manner that allows the capture of the results in a computer-accessible form. The published results need to comply with the FAIR guiding principles for scientific data management and stewardship to facilitate the extraction of datasets that are easily transposable into machine-actionable information. The ultimate purpose is the creation of a database of rare disease treatments ("Treatabolome") at gene and variant levels as part of the H2020 research project Solve-RD. Results: Each systematic review follows a written protocol to address one or more rare diseases in which the authors are experts. The bibliographic search strategy requires detailed documentation to allow its replication. Data capture forms should be built to facilitate the filling of a data capture spreadsheet and to record the application of the inclusion and exclusion criteria to each search result. A PRISMA flowchart is required to provide an overview of the processes of search and selection of papers. A separate table condenses the data collected during the Systematic Review, appraised according to their level of evidence. Conclusions: This paper provides a template that includes the instructions for writing FAIR-compliant systematic reviews of rare diseases' treatments that enables the assembly of a Treatabolome database that complement existing diagnostic and management support tools with treatment awareness data

    Implementation of Novel Molecular Biomarkers for Non-small Cell Lung Cancer in the Netherlands:How to Deal With Increasing Complexity

    Get PDF
    The diagnostic landscape of non-small cell lung cancer (NSCLC) is changing rapidly with the availability of novel treatments. Despite high-level healthcare in the Netherlands, not all patients with NSCLC are tested with the currently relevant predictive tumor markers that are necessary for optimal decision-making for today's available targeted or immunotherapy. An expert workshop on the molecular diagnosis of NSCLC involving pulmonary oncologists, clinical chemists, pathologists, and clinical scientists in molecular pathology was held in the Netherlands on December 10, 2018. The aims of the workshop were to facilitate cross-disciplinary discussions regarding standards of practice, and address recent developments and associated challenges that impact future practice. This paper presents a summary of the discussions and consensus opinions of the workshop participants on the initial challenges of harmonization of the detection and clinical use of predictive markers of NSCLC. A key theme identified was the need for broader and active participation of all stakeholders involved in molecular diagnostic services for NSCLC, including healthcare professionals across all disciplines, the hospitals and clinics involved in service delivery, healthcare insurers, and industry groups involved in diagnostic and treatment innovations. Such collaboration is essential to integrate different technologies into molecular diagnostics practice, to increase nationwide patient access to novel technologies, and to ensure consensus-preferred biomarkers are tested

    Mathematical Properties of a New Levin-Type Sequence Transformation Introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. I. Algebraic Theory

    Full text link
    \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la [J. Math. Phys. \textbf{44}, 962 - 968 (2003)] introduced in connection with the summation of the divergent perturbation expansion of the hydrogen atom in an external magnetic field a new sequence transformation which uses as input data not only the elements of a sequence {sn}n=0\{s_n \}_{n=0}^{\infty} of partial sums, but also explicit estimates {ωn}n=0\{\omega_n \}_{n=0}^{\infty} for the truncation errors. The explicit incorporation of the information contained in the truncation error estimates makes this and related transformations potentially much more powerful than for instance Pad\'{e} approximants. Special cases of the new transformation are sequence transformations introduced by Levin [Int. J. Comput. Math. B \textbf{3}, 371 - 388 (1973)] and Weniger [Comput. Phys. Rep. \textbf{10}, 189 - 371 (1989), Sections 7 -9; Numer. Algor. \textbf{3}, 477 - 486 (1992)] and also a variant of Richardson extrapolation [Phil. Trans. Roy. Soc. London A \textbf{226}, 299 - 349 (1927)]. The algebraic theory of these transformations - explicit expressions, recurrence formulas, explicit expressions in the case of special remainder estimates, and asymptotic order estimates satisfied by rational approximants to power series - is formulated in terms of hitherto unknown mathematical properties of the new transformation introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. This leads to a considerable formal simplification and unification.Comment: 41 + ii pages, LaTeX2e, 0 figures. Submitted to Journal of Mathematical Physic
    corecore