769 research outputs found
The role of the dopant in the superconductivity of diamond
We present an {\it ab initio} study of the recently discovered
superconductivity of boron doped diamond within the framework of a
phonon-mediated pairing mechanism. The role of the dopant, in substitutional
position, is unconventional in that half of the coupling parameter
originates in strongly localized defect-related vibrational modes, yielding a
very peaked Eliashberg function. The electron-phonon
coupling potential is found to be extremely large and T is limited by the
low value of the density of states at the Fermi level
Theoretical Study of One-dimensional Chains of Metal Atoms in Nanotubes
Using first-principles total-energy pseudopotential calculations, we have
studied the properties of chains of potassium and aluminum in nanotubes. For BN
tubes, there is little interaction between the metal chains and the tubes, and
the conductivity of these tubes is through carriers located at the inner part
of the tube. In contrast, for small radius carbon nanotubes, there are two
types of interactions: charge-transfer (dominant for alkali atoms) leading to
strong ionic cohesion, and hybridization (for multivalent metal atoms)
resulting in a smaller cohesion. For Al-atomic chains in carbon tubes, we show
that both effects contribute. New electronic properties related to these
confined atomic chains of metal are analyzed.Comment: 12 pages + 3 figure
Excitons and Many-Electron Effects in the Optical Response of Single-Walled Boron Nitride Nanotubes
We report first-principles calculations of the effects of quasiparticle
self-energy and electron-hole interaction on the optical properties of
single-walled BN nanotubes. Excitonic effects are shown to be even more
important in BN nanotubes than in carbon nanotubes. Electron-hole interactions
give rise to complexes of bright (and dark) excitons, which qualitatively alter
the optical response. Excitons with binding energy larger than 2 eV are found
in the (8,0) BN nanotubes. Moreover, unlike the carbon nanotubes, theory
predicts that these exciton states are comprised of coherent supposition of
transitions from several different subband pairs, giving rise to novel
behaviors.Comment: 4 pages, 4 figure
BN domains included into carbon nanotubes: role of interface
We present a density functional theory study on the shape and arrangement of
small BN domains embedded into single-walled carbon nanotubes. We show a strong
tendency for the BN hexagons formation at the simultaneous inclusion of B and N
atoms within the walls of carbon nanotubes. The work emphasizes the importance
of a correct description of the BN-C frontier. We suggest that BN-C interface
will be formed preferentially with the participation of N-C bonds. Thus, we
propose a new way of stabilizing the small BN inclusions through the formation
of nitrogen terminated borders. The comparison between the obtained results and
the available experimental data on formation of BN plackets within the single
walled carbon nanotubes is presented. The mirror situation of inclusion of
carbon plackets within single walled BN nanotubes is considered within the
proposed formalism. Finally, we show that the inclusion of small BN plackets
inside the CNTs strongly affects the electronic character of the initial
systems, opening a band gap. The nitrogen excess in the BN plackets introduces
donor states in the band gap and it might thus result in a promising way for
n-doping single walled carbon nanotubes
Curvature, hybridization, and STM images of carbon nanotubes
The curvature effects in carbon nanotubes are studied analytically as a
function of chirality. The pi-orbitals are found to be significantly
rehybridized in all tubes, so that they are never normal to the tubes' surface.
This results in a curvature induced gap in the electronic band-structure, which
turns out to be larger than previous estimates. The tilting of the pi-orbitals
should be observable by atomic resolution scanning tunneling microscopy
measurements.Comment: Four pages in revtex format including four epsfig-embedded figures.
The latest version in PDF format is available from
http://fy.chalmers.se/~eggert/papers/hybrid.pd
Identification of Electron Donor States in N-doped Carbon Nanotubes
Nitrogen doped carbon nanotubes have been synthesized using pyrolysis and
characterized by Scanning Tunneling Spectroscopy and transmission electron
microscopy. The doped nanotubes are all metallic and exhibit strong electron
donor states near the Fermi level. Using tight-binding and ab initio
calculations, we observe that pyridine-like N structures are responsible for
the metallic behavior and the prominent features near the Fermi level. These
electron rich structures are the first example of n-type nanotubes, which could
pave the way to real molecular hetero-junction devices.Comment: 5 pages, 4 figures, revtex, submitted to PR
Size, Shape and Low Energy Electronic Structure of Carbon Nanotubes
A theory of the long wavelength low energy electronic structure of
graphite-derived nanotubules is presented. The propagating electrons are
described by wrapping a massless two dimensional Dirac Hamiltonian onto a
curved surface. The effects of the tubule size, shape and symmetry are included
through an effective vector potential which we derive for this model. The rich
gap structure for all straight single wall cylindrical tubes is obtained
analytically in this theory, and the effects of inhomogeneous shape
deformations on nominally metallic armchair tubes are analyzed.Comment: 5 pages, 3 postscript figure
Elimination of unoccupied state summations in it ab initio self-energy calculations for large supercells
We present a new method for the computation of self-energy corrections in large supercells. It eliminates the explicit summation over unoccupied states, and uses an iterative scheme based on an expansion of the Green's function around a set of reference energies. This improves the scaling of the computational time from the fourth to the third power of the number of atoms for both the inverse dielectric matrix and the self-energy, yielding improved efficiency for 8 or more silicon atoms per unit cell
Electric Polarization of Heteropolar Nanotubes as a Geometric Phase
The three-fold symmetry of planar boron nitride, the III-V analog to
graphene, prohibits an electric polarization in its ground state, but this
symmetry is broken when the sheet is wrapped to form a BN nanotube. We show
that this leads to an electric polarization along the nanotube axis which is
controlled by the quantum mechanical boundary conditions on its electronic
states around the tube circumference. Thus the macroscopic dipole moment has an
{\it intrinsically nonlocal quantum} mechanical origin from the wrapped
dimension. We formulate this novel phenomenon using the Berry's phase approach
and discuss its experimental consequences.Comment: 4 pages with 3 eps figures, updated with correction to Eqn (9
- …