280 research outputs found

    On the self-consistent model of the axisymmetric radio pulsar magnetosphere

    Full text link
    We consider a model of axisymmetric neutron star magnetosphere. In our approach, the current density in the region of open field lines is constant and the returning current flows in a narrow layer along the separatrix. In this case, the stream equation describing the magnetic field structure is linear both in the open and closed regions, the main problem lying in matching the solutions along the separatrix (Okamoto 1974; Lyubarskii 1990). We demonstrate that it is the stability condition on the separatrix that allows us to obtain a unique solution of the problem. In particular, the zero point of magnetic field is shown to locate near the light cylinder. Moreover, the hypothesis of the existence of the nonlinear Ohm's Law (Beskin, Gurevich & Istomin 1983) connecting the potential drop in the pair creation region and the longitudinal electric current flowing in the magnetosphere is confirmed.Comment: 7 pages, 5 figures, twocolumn MNRAS styl

    On the role of the current loss in radio pulsar evolution

    Get PDF
    The aim of this article is to draw attention to the importance of the electric current loss in the energy output of radio pulsars. We remind that even the losses attributed to the magneto-dipole radiation of a pulsar in vacuum can be written as a result of an Ampere force action of the electric currens flowing over the neutron star surface (Michel, 1991, Beskin et al., 1993). It is this force that is responsible for the transfer of angular momentum of a neutron star to an outgoing magneto-dipole wave. If a pulsar is surrounded by plasma, and there is no longitudinal current in its magnetosphere, there is no energy loss (Beskin et al., 1993, Mestel et al., 1999). It is the longitudinal current closing within the pulsar polar cap that exerts the retardation torque acting on the neutron star. This torque can be determined if the structure of longitudinal current is known. Here we remind of the solution by Beskin, Gurevitch & Istomin (1993) and discuss the validity of such an assumption. The behavior of the recently observed "part-time job" pulsar B1931+24 can be naturally explained within the model of current loss while the magneto-dipole model faces difficulties.Comment: 4 pages, to appear in Astrophysics and Space Science, Special Issue: Isolated Neutron Stars. In the replaced paper we amended several misprints (coefficients in equations 12,14,15) and removed the excessive explanation for the boundary condition (4

    On the Possibility of the Detection of Extinct Radio Pulsars

    Full text link
    We explore the possibilities for detecting pulsars that have ceased to radiate in the radio band. We consider two models: the model with hindered particle escape from the pulsar surface (first suggested by Ruderman and Sutherland 1975) and the model with free particle escape (Arons 1981; Mestel 1999). In the model with hindered particle escape, the number of particles that leave the pulsar magnetosphere is small and their radiation cannot be detected with currently available instruments. At the same time, for the free particle escape model, both the number of particles and the radiation intensity are high enough for such pulsars to be detectable with the presently available receivers such as GLAST and AGILE spacecrafts. It is also possible that extinct radio pulsars can be among the unidentified EGRET sources.Comment: 5 pages, 1 figure corrected version of the paper that was published in Astronomy Letter

    Peculiar objects in the birthplaces of radio pulsars -- stellar-mass black hole candidates

    Full text link
    We perform a search for stellar-mass black hole candidates in the spatial regions with increased probability of their occurrence, isolated based on the evolutionary scenarios for compact objects originating in disrupted binaries. We analyze the sources located in these regions with available spectral or photometric data, as well as measured proper motions and distances. Nine objects that exhibit characteristics corresponding to theoretical predictions for isolated black holes are marked for further study as black hole candidates

    Kinetic theory of electromagnetic ion waves in relativistic plasmas

    Get PDF
    A kinetic theory for electromagnetic ion waves in a cold relativistic plasma is derived. The kinetic equation for the broadband electromagnetic ion waves is coupled to the slow density response via an acoustic equation driven by ponderomotive force like term linear in the electromagnetic field amplitude. The modulational instability growth rate is derived for an arbitrary spectrum of waves. The monochromatic and random phase cases are studied.Comment: 7 pages, 4 figures, to appear in Physics of Plasma

    Statistics of Neutron Stars at the Stage of Supersonic Propeller

    Full text link
    We analyze the statistical distribution of neutron stars at the stage of a supersonic propeller. An important point of our analysis is allowance for the evolution of the angle of inclination of the magnetic axis to the spin axis of the neutron star for the boundary of the transition to the supersonic propeller stage for two models: the model with hindered particle escape from the stellar surface and the model with free particle escape. As a result, we have shown that a consistent allowance for the evolution of the inclination angle in the region of extinct radio pulsars for the two models leads to an increase in the total number of neutron stars at the supersonic propeller stage. This increase stems from he fact that when allowing for the evolution of the inclination angle χ\chi for neutron stars in the region of extinct radio pulsars and, hence, for the boundary of the transition to the propeller stage, this transition is possible at shorter spin periods (P~5-10 s) than assumed in the standard model.Comment: 15 pages, 6 figures; scale corrected for figures 3-

    M87 black hole mass and spin estimate through the position of the jet boundary shape break

    Full text link
    We propose a new method of estimating a mass of a super massive black hole residing in the center of an active galaxy. The active galaxy M87 offers a convenient test case for the method due to the existence of a large amount of observational data on the jet and ambient environment properties in the central area of the object. We suggest that the observed transition of a jet boundary shape from a parabolic to a conical form is associated with the flow transiting from the magnetically dominated regime to the energy equipartition between plasma bulk motion and magnetic field. By coupling the unique set of observations available for the jet kinematics, environment and boundary profile with our MHD modelling under assumption on the presence of a dynamically important magnetic field in the M87 jet, we estimate the central black hole mass and spin. The method leads us to believe that the M87 super massive black hole has a mass somewhat larger than typically accepted so far.Comment: 10 pages, 1 figure, 3 tables, accepted for publication by MNRA

    Region of the anomalous compression under Bondi-Hoyle accretion

    Full text link
    We investigate the properties of an axisymmetric non-magnetized gas flow without angular momentum on a small compact object, in particular, on a Schwarzschild black hole in the supersonic region near the object; the velocity of the object itself is assumed to be low compared to the speed of sound at infinity. First of all, we see that the streamlines intersect (i.e., a caustic forms) on the symmetry axis at a certain distance rxr_x from the center on the front side if the pressure gradient is neglected. The characteristic radial size of the region, in which the streamlines emerging from the sonic surface at an angle no larger than θ0\theta_0 to the axis intersect, is Δr=rxθ02/3.\Delta r= r_x\theta^2_0/3. To refine the flow structure in this region, we numerically compute the system in the adiabatic approximation without ignoring the pressure. We estimate the parameters of the inferred region with anomalously high matter temperature and density accompanied by anomalously high energy release.Comment: 10 pages, 2 figure
    • …
    corecore