24 research outputs found

    Brane Resolution Through Fibration

    Full text link
    We consider p-branes with one or more circular directions fibered over the transverse space. The fibration, in conjunction with the transverse space having a blown-up cycle, enables these p-brane solutions to be completely regular. Some such circularly-wrapped D3-brane solutions describe flows from SU(N)^3 N=2 theory, F_0 theory, as well as an infinite family of superconformal quiver gauge theories, down to three-dimensional field theories. We discuss the operators that are turned on away from the UV fixed points. Similarly, there are wrapped M2-brane solutions which describe smooth flows from known three-dimensional supersymmetric Chern-Simons matter theories, such as ABJM theory. We also consider p-brane solutions on gravitational instantons, and discuss various ways in which U-duality can be applied to yield other non-singular solutions.Comment: 35 pages, additional referenc

    Spectral geometry, homogeneous spaces, and differential forms with finite Fourier series

    Full text link
    Let G be a compact Lie group acting transitively on Riemannian manifolds M and N. Let p be a G equivariant Riemannian submersion from M to N. We show that a smooth differential form on N has finite Fourier series if and only if the pull back has finite Fourier series on

    Pseudo-Riemannian manifolds with recurrent spinor fields

    Full text link
    The existence of a recurrent spinor field on a pseudo-Riemannian spin manifold (M,g)(M,g) is closely related to the existence of a parallel 1-dimensional complex subbundle of the spinor bundle of (M,g)(M,g). We characterize the following simply connected pseudo-Riemannian manifolds admitting such subbundles in terms of their holonomy algebras: Riemannian manifolds; Lorentzian manifolds; pseudo-Riemannian manifolds with irreducible holonomy algebras; pseudo-Riemannian manifolds of neutral signature admitting two complementary parallel isotropic distributions.Comment: 13 pages, the final versio

    Holonomy of Einstein Lorentzian manifolds

    Full text link
    The classification of all possible holonomy algebras of Einstein and vacuum Einstein Lorentzian manifolds is obtained. It is shown that each such algebra appears as the holonomy algebra of an Einstein (resp., vacuum Einstein) Lorentzian manifold, the direct constructions are given. Also the holonomy algebras of totally Ricci-isotropic Lorentzian manifolds are classified. The classification of the holonomy algebras of Lorentzian manifolds is reviewed and a complete description of the spaces of curvature tensors for these holonomies is given.Comment: Dedicated to to Mark Volfovich Losik on his 75th birthday. This version is an extended part of the previous version; another part of the previous version is extended and submitted as arXiv:1001.444

    Vacuum Spacetimes with Future Trapped Surfaces

    Full text link
    In this article we show that one can construct initial data for the Einstein equations which satisfy the vacuum constraints. This initial data is defined on a manifold with topology R3R^3 with a regular center and is asymptotically flat. Further, this initial data will contain an annular region which is foliated by two-surfaces of topology S2S^2. These two-surfaces are future trapped in the language of Penrose. The Penrose singularity theorem guarantees that the vacuum spacetime which evolves from this initial data is future null incomplete.Comment: 19 page

    New Einstein-Sasaki and Einstein Spaces from Kerr-de Sitter

    Get PDF
    In this paper, which is an elaboration of our results in hep-th/0504225, we construct new Einstein-Sasaki spaces L^{p,q,r_1,...,r_{n-1}} in all odd dimensions D=2n+1\ge 5. They arise by taking certain BPS limits of the Euclideanised Kerr-de Sitter metrics. This yields local Einstein-Sasaki metrics of cohomogeneity n, with toric U(1)^{n+1} principal orbits, and n real non-trivial parameters. By studying the structure of the degenerate orbits we show that for appropriate choices of the parameters, characterised by the (n+1) coprime integers (p,q,r_1,...,r_{n-1}), the local metrics extend smoothly onto complete and non-singular compact Einstein-Sasaki manifolds L^{p,q,r_1,...,r_{n-1}}. We also construct new complete and non-singular compact Einstein spaces \Lambda^{p,q,r_1,...,r_n} in D=2n+1 that are not Sasakian, by choosing parameters appropriately in the Euclideanised Kerr-de Sitter metrics when no BPS limit is taken.Comment: latex, 26 page

    Resolutions of C^n/Z_n Orbifolds, their U(1) Bundles, and Applications to String Model Building

    Full text link
    We describe blowups of C^n/Z_n orbifolds as complex line bundles over CP^{n-1}. We construct some gauge bundles on these resolutions. Apart from the standard embedding, we describe U(1) bundles and an SU(n-1) bundle. Both blowups and their gauge bundles are given explicitly. We investigate ten dimensional SO(32) super Yang-Mills theory coupled to supergravity on these backgrounds. The integrated Bianchi identity implies that there are only a finite number of U(1) bundle models. We describe how the orbifold gauge shift vector can be read off from the gauge background. In this way we can assert that in the blow down limit these models correspond to heterotic C^2/Z_2 and C^3/Z_3 orbifold models. (Only the Z_3 model with unbroken gauge group SO(32) cannot be reconstructed in blowup without torsion.) This is confirmed by computing the charged chiral spectra on the resolutions. The construction of these blowup models implies that the mismatch between type-I and heterotic models on T^6/Z_3 does not signal a complication of S-duality, but rather a problem of type-I model building itself: The standard type-I orbifold model building only allows for a single model on this orbifold, while the blowup models give five different models in blow down.Comment: 1+27 pages LaTeX, 2 figures, some typos correcte

    A Note on Einstein Sasaki Metrics in D \ge 7

    Full text link
    In this paper, we obtain new non-singular Einstein-Sasaki spaces in dimensions D\ge 7. The local construction involves taking a circle bundle over a (D-1)-dimensional Einstein-Kahler metric that is itself constructed as a complex line bundle over a product of Einstein-Kahler spaces. In general the resulting Einstein-Sasaki spaces are singular, but if parameters in the local solutions satisfy appropriate rationality conditions, the metrics extend smoothly onto complete and non-singular compact manifolds.Comment: Latex, 13 page

    M-theory on `toric' G_2 cones and its type II reduction

    Full text link
    We analyze a class of conical G_2 metrics admitting two commuting isometries, together with a certain one-parameter family of G_2 deformations which preserves these symmetries. Upon using recent results of Calderbank and Pedersen, we write down the explicit G_2 metric for the most general member of this family and extract the IIA reduction of M-theory on such backgrounds, as well as its type IIB dual. By studying the asymptotics of type II fields around the relevant loci, we confirm the interpretation of such backgrounds in terms of localized IIA 6-branes and delocalized IIB 5-branes. In particular, we find explicit, general expressions for the string coupling and R-R/NS-NS forms in the vicinity of these objects. Our solutions contain and generalize the field configurations relevant for certain models considered in recent work of Acharya and Witten.Comment: 45 pages, references adde

    Cohomogeneity One Manifolds of Spin(7) and G(2) Holonomy

    Get PDF
    In this paper, we look for metrics of cohomogeneity one in D=8 and D=7 dimensions with Spin(7) and G_2 holonomy respectively. In D=8, we first consider the case of principal orbits that are S^7, viewed as an S^3 bundle over S^4 with triaxial squashing of the S^3 fibres. This gives a more general system of first-order equations for Spin(7) holonomy than has been solved previously. Using numerical methods, we establish the existence of new non-singular asymptotically locally conical (ALC) Spin(7) metrics on line bundles over \CP^3, with a non-trivial parameter that characterises the homogeneous squashing of CP^3. We then consider the case where the principal orbits are the Aloff-Wallach spaces N(k,\ell)=SU(3)/U(1), where the integers k and \ell characterise the embedding of U(1). We find new ALC and AC metrics of Spin(7) holonomy, as solutions of the first-order equations that we obtained previously in hep-th/0102185. These include certain explicit ALC metrics for all N(k,\ell), and numerical and perturbative results for ALC families with AC limits. We then study D=7 metrics of G2G_2 holonomy, and find new explicit examples, which, however, are singular, where the principal orbits are the flag manifold SU(3)/(U(1)\times U(1)). We also obtain numerical results for new non-singular metrics with principal orbits that are S^3\times S^3. Additional topics include a detailed and explicit discussion of the Einstein metrics on N(k,\ell), and an explicit parameterisation of SU(3).Comment: Latex, 60 pages, references added, formulae corrected and additional discussion on the asymptotic flow of N(k,l) cases adde
    corecore