618 research outputs found

    Two Component Heat Diffusion Observed in CMR Manganites

    Full text link
    We investigate the low-temperature electron, lattice, and spin dynamics of LaMnO_3 (LMO) and La_0.7Ca_0.3MnO_3 (LCMO) by resonant pump-probe reflectance spectroscopy. Probing the high-spin d-d transition as a function of time delay and probe energy, we compare the responses of the Mott insulator and the double-exchange metal to the photoexcitation. Attempts have previously been made to describe the sub-picosecond dynamics of CMR manganites in terms of a phenomenological three temperature model describing the energy transfer between the electron, lattice and spin subsystems followed by a comparatively slow exponential decay back to the ground state. However, conflicting results have been reported. Here we first show clear evidence of an additional component in the long term relaxation due to film-to-substrate heat diffusion and then develop a modified three temperature model that gives a consistent account for this feature. We confirm our interpretation by using it to deduce the bandgap in LMO. In addition we also model the non-thermal sub-picosecond dynamics, giving a full account of all observed transient features both in the insulating LMO and the metallic LCMO.Comment: 6 pages, 5 figures http://link.aps.org/doi/10.1103/PhysRevB.81.064434 v2: Abstract correcte

    Anharmonic softening of Raman active phonons in Iron-Pnictides; estimating the Fe isotope effect due to anharmonic expansion

    Full text link
    We present Raman measurements on the iron-pnictide superconductors CeFeAsO_{1-x}F_{x} and NdFeAsO{1-x}F_{x}. Modeling the Fe-As plane in terms of harmonic and a cubic anharmonic Fe-As interaction we calculate the temperature dependence of the energy and lifetime of the Raman active Fe B_{1g} mode and fit to the observed energy shift. The shifts and lifetimes are in good agreement with those measured also in other Raman studies which demonstrate that the phonon spectrum is well represented by phonon-phonon interactions without any significant electronic contribution. We also estimate the anharmonic expansion from Fe (56->54) isotope substitution to \Delta a=5.1 10^{-4}\AA and \Delta d_{Fe-As}= 2.510^{-4}\AA and the shift of harmonic zero point fluctuations of bond lengths <=3 10^{-5}\AA^2, giving a total relative average decrease of electronic hopping integrals of |\delta t|/t<= 2.0 10^{-4}. The results poses a serious challenge for any theory of superconductivity in the pnictides that does not include electron-phonon interactions to produce a sizable Fe-isotope effect.Comment: 7 pages, 6 figure

    Effects of hydrogen bonding on supercooled liquid dynamics and the implications for supercooled water

    Get PDF
    The supercooled state of bulk water is largely hidden by unavoidable crystallization, which creates an experimentally inaccessible temperature regime - a 'no man's land'. We address this and circumvent the crystallization problem by systematically studying the supercooled dynamics of hydrogen bonded oligomeric liquids (glycols), where water corresponds to the chain-ends alone. This novel approach permits a 'dilution of water' by altering the hydrogen bond concentration via variations in chain length. We observe a dynamic crossover in the temperature dependence of the structural relaxation time for all glycols, consistent with the common behavior of most supercooled liquids. We find that the crossover becomes more pronounced for increasing hydrogen bond concentrations, which leads to the prediction of a marked dynamic transition for water within 'no man's land' at T~220 K. Interestingly, the predicted transition thus takes place at a temperature where a so called 'strong-fragile' transition has previously been suggested. Our results, however, imply that the dynamic transition of supercooled water is analogous to that commonly observed in supercooled liquids. Moreover, we find support also for the existence of a secondary relaxation of water with behavior analogous to that of the secondary relaxation observed for the glycols.Comment: 20 pages, 5 figures; corrected typos, title changed, small clarifying text changes, two labels removed from Fig. 2

    Highly efficient incorporation of the fluorescent nucleotide analogs tC and tCO by Klenow fragment

    Get PDF
    Studies of the mechanisms by which DNA polymerases select the correct nucleotide frequently employ fluorescently labeled DNA to monitor conformational rearrangements of the polymerase–DNA complex in response to incoming nucleotides. For this purpose, fluorescent base analogs play an increasingly important role because they interfere less with the DNA–protein interaction than do tethered fluorophores. Here we report the incorporation of the 5′-triphosphates of two exceptionally bright cytosine analogs, 1,3-diaza-2-oxo-phenothiazine (tC) and its oxo-homolog, 1,3-diaza-2-oxo-phenoxazine (tCO), into DNA by the Klenow fragment. Both nucleotide analogs are polymerized with slightly higher efficiency opposite guanine than cytosine triphosphate and are shown to bind with nanomolar affinity to the DNA polymerase active site, according to fluorescence anisotropy measurements. Using this method, we perform competitive binding experiments and show that they can be used to determine the dissociation constant of any given natural or unnatural nucleotide. The results demonstrate that the active site of the Klenow fragment is flexible enough to tolerate base pairs that are size-expanded in the major groove. In addition, the possibility to enzymatically polymerize a fluorescent nucleotide with high efficiency complements the tool box of biophysical probes available to study DNA replication

    Use of near infrared reflectance spectroscopy to predict nitrogen uptake by winter wheat within fields with high variability in organic matter

    Get PDF
    In this study, the ability to predict N-uptake in winter wheat crops using NIR-spectroscopy on soil samples was evaluated. Soil samples were taken in unfertilized plots in one winter wheat field during three years (1997-1999) and in another winter wheat field nearby in one year (2000). Soil samples were analyzed for organic C content and their NIR-spectra. N-uptake was measured as total N-content in aboveground plant materials at harvest. Models calibrated to predict N-uptake were internally cross validated and validated across years and across fields. Cross-validated calibrations predicted N-uptake with an average error of 12.1 to 15.4 kg N ha-1. The standard deviation divided by this error (RPD) ranged between 1.9 and 2.5. In comparison, the corresponding calibrations based on organic C alone had an error from 11.7 to 28.2 kg N ha-1 and RPDs from 1.3 to 2.5. In three of four annual calibrations within a field, the NIR-based calibrations worked better than the organic C based calibrations. The prediction of N-uptake across years, but within a field, worked slightly better with an organic C based calibration than with a NIR based one, RPD = 1.9 and 1.7 respectively. Across fields, the corresponding difference was large in favour of the NIR-calibration, RPD = 2.5 for the NIR-calibration and 1.5 for the organic C calibration. It was concluded that NIR-spectroscopy integrates information about organic C with other relevant soil components and therefore has a good potential to predict complex functions of soils such as N-mineralization. A relatively good agreement of spectral relationships to parameters related to the N-mineralization of datasets across the world suggests that more general models can be calibrated

    Propylene Carbonate Reexamined: Mode-Coupling β\beta Scaling without Factorisation ?

    Full text link
    The dynamic susceptibility of propylene carbonate in the moderately viscous regime above TcT_{\rm c} is reinvestigated by incoherent neutron and depolarised light scattering, and compared to dielectric loss and solvation response. Depending on the strength of α\alpha relaxation, a more or less extended β\beta scaling regime is found. Mode-coupling fits yield consistently λ=0.72\lambda=0.72 and Tc=182T_{\rm c}=182 K, although different positions of the susceptibility minimum indicate that not all observables have reached the universal asymptotics

    Acute Effects of a Fungal Volatile Compound

    Get PDF
    Objective: 3-Methylfuran (3-MF) is a common fungal volatile product with active biologic properties, and previous studies have indicated a contribution to airway disease. The aim of the present study was to assess the acute health effects of this compound in humans. Design: Acute effects were assessed via chamber exposure to (1 mg/m(3)) 3-MF. Participants and measurements: Twenty-nine volunteers provided symptom reports, ocular electromyograms, measurement of eye tear film break-up time, vital staining of the eye, nasal lavage, acoustic rhinometry, transfer tests, and dynamic spirometry. Results: No subjective ratings were significantly increased during exposure. Blinking frequency and the lavage biomarkers myeloperoxidase and lysozyme were significantly increased, and forced vital capacity was significantly decreased during exposure to 3-MF compared with air control. Conclusions and relevance to clinical practice: Acute effects in the eyes, nose, and airways were detected and might be the result of the biologically active properties of 3-MF. Thus, 3-MF may contribute to building-related illness

    Universal and non-universal features of glassy relaxation in propylene carbonate

    Full text link
    It is demonstrated that the susceptibility spectra of supercooled propylene carbonate as measured by depolarized-light-scattering, dielectric-loss, and incoherent quasi-elastic neutron-scattering spectroscopy within the GHz window are simultaneously described by the solutions of a two-component schematic model of the mode-coupling theory (MCT) for the evolution of glassy dynamics. It is shown that the universal beta-relaxation-scaling laws, dealing with the asymptotic behavior of the MCT solutions, describe the qualitative features of the calculated spectra. But the non-universal corrections to the scaling laws render it impossible to achieve a complete quantitative description using only the leading-order-asymptotic results.Comment: 37 pages, 16 figures, to be published in Phys. Rev.
    corecore