52 research outputs found

    Distribution and genetic variation of hymenolepidid cestodes in murid rodents on the Canary Islands (Spain)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the Canary Islands there are no previous data about tapeworms (Cestoda) of rodents. In order to identify the hymenolepidid species present in these hosts, a survey of 1,017 murine (349 <it>Rattus rattus</it>, 13 <it>Rattus norvegicus </it>and 655 <it>Mus musculus domesticus</it>) was carried out in the whole Archipelago. Molecular studies based on nuclear <it>ITS1 </it>and mitochondrial <it>COI </it>loci were performed to confirm the identifications and to analyse the levels of genetic variation and differentiation.</p> <p>Results</p> <p>Three species of hymenolepidids were identified: <it>Hymenolepis diminuta</it>, <it>Rodentolepis microstoma </it>and <it>Rodentolepis fraterna</it>. <it>Hymenolepis diminuta </it>(in rats) and <it>R. microstoma </it>(in mice) showed a widespread distribution in the Archipelago, and <it>R. fraterna </it>was the least spread species, appearing only on five of the islands. The hymenolepidids found on Fuerteventura, Lanzarote and La Graciosa were restricted to one area. The <it>COI </it>network of <it>H. diminuta </it>showed that the haplotypes from Lanzarote and Fuerteventura are the most distant with respect to the other islands, but clearly related among them.</p> <p>Conclusions</p> <p>Founder effects and biotic and abiotic factors could have played important role in the presence/absence of the hymenolepidid species in determined locations. The haplotypes from the eastern islands (Fuerteventura and Lanzarote) seem to have shared an ancestral haplotype very distant from the most frequent one that was found in the rest of the islands. Two colonization events or a single event with subsequent isolation and reduced gene flow between western-central and eastern islands, have taken place in the Archipelago. The three tapeworms detected are zoonotic species, and their presence among rodents from this Archipelago suggests a potential health risk to human via environmental contamination in high risk areas. However, the relatively low prevalence of infestations detected and the focal distribution of some of these species on certain islands reduce the general transmission risk to human.</p

    State-of-the-art microscopy to understand islets of Langerhans:what to expect next?

    Get PDF
    The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real-time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come

    Cognitive functioning throughout adulthood and illness stages in individuals with psychotic disorders and their unaffected siblings

    Get PDF
    Important questions remain about the profile of cognitive impairment in psychotic disorders across adulthood and illness stages. The age-associated profile of familial impairments also remains unclear, as well as the effect of factors, such as symptoms, functioning, and medication. Using cross-sectional data from the EU-GEI and GROUP studies, comprising 8455 participants aged 18 to 65, we examined cognitive functioning across adulthood in patients with psychotic disorders (n = 2883), and their unaffected siblings (n = 2271), compared to controls (n = 3301). An abbreviated WAIS-III measured verbal knowledge, working memory, visuospatial processing, processing speed, and IQ. Patients showed medium to large deficits across all functions (ES range = –0.45 to –0.73, p < 0.001), while siblings showed small deficits on IQ, verbal knowledge, and working memory (ES = –0.14 to –0.33, p < 0.001). Magnitude of impairment was not associated with participant age, such that the size of impairment in older and younger patients did not significantly differ. However, first-episode patients performed worse than prodromal patients (ES range = –0.88 to –0.60, p < 0.001). Adjusting for cannabis use, symptom severity, and global functioning attenuated impairments in siblings, while deficits in patients remained statistically significant, albeit reduced by half (ES range = –0.13 to –0.38, p < 0.01). Antipsychotic medication also accounted for around half of the impairment in patients (ES range = –0.21 to –0.43, p < 0.01). Deficits in verbal knowledge, and working memory may specifically index familial, i.e., shared genetic and/or shared environmental, liability for psychotic disorders. Nevertheless, potentially modifiable illness-related factors account for a significant portion of the cognitive impairment in psychotic disorders

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore