36 research outputs found
Genetic variation in wood properties of mid-rotation age Eucalyptus globoidea
Background: Eucalyptus globoidea Blakely produces ground-durable (Class 2) and stiff wood and has the potential to be
grown in New Zealand to supply high-value environmentally-friendly timber for use as posts in the agricultural sector
and stiff veneers for the LVL industry. The New Zealand Dryland Forests Initiative (NZDFI) has established a breeding
programme for this species. The objective of this study was to identify trees with superior wood properties for commercial
propagation enabling the establishment of a domestic plantation resource of ground-durable timber.
Methods: The genetic variation in wood properties at mid-rotation age (8-year-old) of 141 E. globoidea families was
assessed for the following traits: heartwood diameter, diameter under bark at ~0.5 m height, combined sapwood diameter,
heartwood collapse, sapwood collapse, standing tree acoustic velocity and extractive content in the heartwood. Families
were ranked and genotypes with large heartwood diameter, high extractive content and stiffness as well as low collapse
were identified.
Results: Heartwood diameter (h2
= 0.51) and extractive content (h2
= 1.16) showed good heritability, which in combination
with high variation are promising traits for a breeding programme. The high heritability for extractive content indicated
a closer relatedness within the population than the assumption of unrelated families of half-siblings. The unfavourable
correlation between the heartwood diameter and extractive content (genetic correlation (rg
) = −0.45) indicated that a
compromise is required for simultaneous improvement of both traits. Heritability estimates for heartwood collapse
(h2 = 0.30) and acoustic velocity (h2 = 0.36) were moderate.
Conclusions: Genetic selection for wood quality traits of E. globoidea is practically feasible. Superior individuals with
above average performance for multiple traits were present in the breeding populations, however, this was dependent on
the intended end use of the timber
Exploration of the Eucalyptus globulus gene pool
The first Europeans to discover Eucalyptus
globulus were French explorers in 1792. Its seed
was rapidly spread throughout the world in the
19th century and this was the species by which
much of the world first knew the genus.
However, it was in the industrial forests of the
20th century that this species, once considered
the ‘Prince of Eucalypts’, achieved greatest
prominence due to its fast growth and superior
pulp qualities. Formal breeding first commenced
in 1966 in Portugal and in the late 1980’s large
base population trials from open-pollinated seed
collections from native stands were established
in many countries. These trials have provided
unprecedented insights into the quantitative
genetic control of numerous traits of economic
and ecological importance and how this variation
is spatially distributed in the native range of the
species. However with large, fully pedigreed
breeding populations becoming available for
quantitative analysis and the rapidly expanding
knowledge of DNA sequence variation, we are
now at the threshold of a new understanding of
this important eucalypt gene pool. Indications of
the significance of non-additive genetic effects
are becoming available. The E. globulus
chloroplast genome has now been sequenced
and several genome maps have been published.
Studies of the variation in nuclear microsatellites
and the lignin biosynthesis gene CCR confirm
the complex, spatially structured nature of the
native gene pool. Strong spatial structuring of
the chloroplast genome has provided a tool for
tracking seed migration and the geographic
origin of exotic landraces. Highly divergent
lineages of chloroplast DNA have been
discovered and studies of the hypervariable JLA+
region argue that some components of the E.
globulus gene pool have been assimilated from
other species following hybridisation
Non-destructive evaluation techniques and what they tell us about wood property variation
To maximize utilization of our forest resources, detailed knowledge of wood property variation and the impacts this has on end-product performance is required at multiple scales (within and among trees, regionally). As many wood properties are difficult and time-consuming to measure our knowledge regarding their variation is often inadequate as is our understanding of their responses to genetic and silvicultural manipulation. The emergence of many non-destructive evaluation (NDE) methodologies offers the potential to greatly enhance our understanding of the forest resource; however, it is critical to recognize that any technique has its limitations and it is important to select the appropriate technique for a given application. In this review, we will discuss the following technologies for assessing wood properties both in the field: acoustics, Pilodyn, Resistograph and Rigidimeter and the lab: computer tomography (CT) scanning, DiscBot, near infrared (NIR) spectroscopy, radial sample acoustics and SilviScan. We will discuss these techniques, explore their utilization, and list applications that best suit each methodology. As an end goal, NDE technologies will help researchers worldwide characterize wood properties, develop accurate models for prediction, and utilize field equipment that can validate the predictions. The continued advancement of NDE technologies will also allow researchers to better understand the impact on wood properties on product performance
TREEPLAN� - A Genetic Evaluation System for Forest Trees
The TREEPLAN� genetic evaluation system is designed specifically for the efficient and accurate prediction of breeding and other genetic values in trees. TREEPLAN� uses the preferred statistical method of best linear unbiased prediction (BLUP) using an individual tree additive genetic effect. Although BLUP methods are well developed theoretically, other software is suitable only for breeding value estimation and prediction on small and/or highly structured (balanced) data sets. Packages such as ASREML and SAS have hardware and software limitations that make them unsuitable for routine prediction on large data sets with complex pedigree structures and overlapping generations. TREEPLAN� fits a reduced individual tree model for purposes of efficiency. TREEPLAN� can model multiple genetic groups, handle clonal data, fit multi-trait models with more than 50 traits, accommodate heterogeneous variances, fit site specific statistical and genetic models, and also weights information across environments (accounts for genotype by environment interaction) and time (allows for age:age correlations). The Southern Tree Breeding Association (STBA) is routinely using TREEPLAN� for genetic evaluation in Australian tree improvement programs for Pinus radiata, Eucalyptus globulus and E. nitens. TREEPLAN� has allowed data across generations and years to be combined in a multi-trait analysis to produce single lists of breeding values for each trait and environment combination. TREEPLAN� is easy to use and has the �industrial strength� to handle large amounts of unbalanced data with the complex pedigree structures that are usually associated with national or regional tree improvement programs. TREEPLAN� is fully integrated with a web based data management system that efficiently handles data and pedigree information. The analytical power and flexibility of the TREEPLAN� system has made routine genetic evaluation in trees a straightforward process.Papers and abstracts from the 27th Southern Forest Tree Improvement Conference held at Oklahoma State University in Stillwater, Oklahoma on June 24-27, 2003
Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus
Genetic variation and co-variation among the key
pulpwood selection traits for Eucalyptus globulus were
estimated for a range of sites in Portugal, with the aim of
improving genetic parameters used to predict breeding
values and correlated response to selection. The trials
comprised clonally replicated full-sib families (eight trials)
and unrelated clones (17 trials), and exhibited varying
levels of pedigree connectivity. The traits studied were stem
diameter at breast height, Pilodyn penetration (an indirect
measure of wood basic density) and near infrared reflectance
predicted pulp yield. Univariate and multivariate
linear mixed models were fitted within and across sites, and estimates of additive genetic, total genetic, environmental
and phenotypic variances and covariances were obtained.
All traits studied exhibited significant levels of additive
genetic variation. The average estimated within-site narrowsense
heritability was 0.19±0.03 for diameter and 0.29±
0.03 for Pilodyn penetration, and the pooled estimate for
predicted pulp yield was 0.42±0.14. When they could be
tested, dominance and epistatic effects were generally not
statistically significant, although broad-sense heritability
estimates were slightly higher than narrow-sense heritability
estimates. Averaged across trials, positive additive
(0.64±0.08), total genetic (0.58±0.04), environmental
(0.38±0.03) and phenotypic (0.43±0.02) correlation estimates
were consistently obtained between diameter and
Pilodyn penetration. This data argues for at least some form
of pleiotropic relationship between these two traits and that
selection for fast growth will adversely affect wood density
in this population. Estimates of the across-site genetic
correlations for diameter and Pilodyn penetration were
high, indicating that the genotype by environment interaction
is low across the range of sites tested. This result
supports the use of single aggregated selection criteria for
growth and wood density across planting environments in
Portugal, as opposed to having to select for performance in
different environment
Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus
Background: Eucalyptus is an important genus in industrial plantations throughout the world and is grown for use as timber, pulp, paper and charcoal. Several breeding programmes have been launched worldwide to concomitantly improve growth performance and wood properties (WPs). In this study, an interspecific cross between Eucalyptus urophylla and E. grandis was used to identify major genomic regions (Quantitative Trait Loci, QTL) controlling the variability of WPs. Results: Linkage maps were generated for both parent species. A total of 117 QTLs were detected for a series of wood and end-use related traits, including chemical, technological, physical, mechanical and anatomical properties. The QTLs were mainly clustered into five linkage groups. In terms of distribution of QTL effects, our result agrees with the typical L-shape reported in most QTL studies, i.e. most WP QTLs had limited effects and only a few (13) had major effects (phenotypic variance explained > 15%). The co-locations of QTLs for different WPs as well as QTLs and candidate genes are discussed in terms of phenotypic correlations between traits, and of the function of the candidate genes. The major wood property QTL harbours a gene encoding a Cinnamoyl CoA reductase (CCR), a structural enzyme of the monolignol-specific biosynthesis pathway. Conclusions: Given the number of traits analysed, this study provides a comprehensive understanding of the genetic architecture of wood properties in this Eucalyptus full-sib pedigree. At the dawn of Eucalyptus genome sequence, it will provide a framework to identify the nature of genes underlying these important quantitative traits. (Résumé d'auteur
Maternal and carryover effects on early growth of Eucalyptus globulus
Maternal and nonmaternal reciprocal effects were compared with nuclear genetic and carryover effects using a diallel mating amongst eight Eucalyptus globulus Labill. wild parents from northeastern and southern Tasmania races. Seed mass exhibited a significant maternal effect, increasing seed germinative capacity but not germination rate. After accounting for variation in seed mass, both germinative capacity and germination rate exhibited significant reciprocal effects, but these were non maternal in origin. Rapid germination and large seeds resulted in significantly larger seedlings in the nursery, but these carryover effects diminished with age. In contrast, the expression of genetic effects increased with age. Significant additive genetic variation was detected for growth by age 3 years and significant reciprocal differences were detected at the race level after 2 years in field trials. If common, such reciprocal effects could bias genetic parameters and impact on the choice of cross-direction in deployment programs. Failure to account for carryover effects in genetic analyses may inflate estimates of genetic variation for growth during early stages of the life cycle