7,947 research outputs found

    On the tension between growth rate and CMB data

    Get PDF
    We analyze the claimed tension between redshift space distorsions measurements of f(z)σ8(z)f(z)\sigma_8(z) and the predictions of standard Λ\LambdaCDM (Planck 2015 and 2018) cosmology. We consider a dataset consisting of 17 data points extending up to redshift z=1.52z=1.52 and corrected for the Alcock-Paczynski effect. Thus, calculating the evolution of the growth factor in a wwCDM cosmology, we find that the tension for the best fit parameters ww, Ωm\Omega_m and σ8\sigma_8 with respect to the Planck 2018 Λ\LambdaCDM parameters is below 2σ2\sigma in all the marginalized confidence regions.Comment: 6 pages, 4 figures. Final version to appear in Eur. Phys. J.

    Hot spots and the hollowness of proton-proton interactions at high energies

    Full text link
    We present a dynamical explanation of the hollowness effect observed in proton-proton scattering at s ⁣= ⁣7\sqrt s\!=\!7 TeV. This phenomenon, not observed at lower energies, consists in a depletion of the inelasticity density at zero impact parameter of the collision. Our analysis is based on three main ingredients: we rely gluonic hot spots inside the proton as effective degrees of freedom for the description of the scattering process. Next we assume that some non-trivial correlation between the transverse positions of the hot spots inside the proton exists. Finally we build the scattering amplitude from a multiple scattering, Glauber-like series of collisions between hot spots. In our approach, the onset of the hollowness effect is naturally explained as due to the diffusion or growth of the hot spots in the transverse plane with increasing collision energy.Comment: 4 pages, 3 figure

    Inferential sensor for the olive oil industry

    Get PDF
    This paper shows an inferential sensor that has been developed to be used in the olive oil industry. This sensor has been designed to measure two variables that appear in the elaboration of olive oil in a mill which are very difficult to be measured on line by a physical sensor. The knowledge of these variables on line is crucial for the optimal operation of the process, since they provide the state of the plant, allowing the development of a control strategy that can improve the quality and yield of the product. This sensor measures variables that in other case should come form laboratory analysis with large processing delays or from very expensive and difficult to use on line analysers. The sensor has been devised based upon artificial Neural Networks (NN) and has been implemented as a routine running on a Programmable Logic Controller (PLC) and successfully tested on a real plant.Ministerio de Ciencia y Tecnología DPI2001-2380-C02-0

    New Directions in Non-Relativistic and Relativistic Rotational and Multipole Kinematics for N-Body and Continuous Systems

    Full text link
    In non-relativistic mechanics the center of mass of an isolated system is easily separated out from the relative variables. For a N-body system these latter are usually described by a set of Jacobi normal coordinates, based on the clustering of the centers of mass of sub-clusters. The Jacobi variables are then the starting point for separating {\it orientational} variables, connected with the angular momentum constants of motion, from {\it shape} (or {\it vibrational}) variables. Jacobi variables, however, cannot be extended to special relativity. We show by group-theoretical methods that two new sets of relative variables can be defined in terms of a {\it clustering of the angular momenta of sub-clusters} and directly related to the so-called {\it dynamical body frames} and {\it canonical spin bases}. The underlying group-theoretical structure allows a direct extension of such notions from a non-relativistic to a special- relativistic context if one exploits the {\it rest-frame instant form of dynamics}. The various known definitions of relativistic center of mass are recovered. The separation of suitable relative variables from the so-called {\it canonical internal} center of mass leads to the correct kinematical framework for the relativistic theory of the orbits for a N-body system with action -at-a-distance interactions. The rest-frame instant form is also shown to be the correct kinematical framework for introducing the Dixon multi-poles for closed and open N-body systems, as well as for continuous systems, exemplified here by the configurations of the Klein-Gordon field that are compatible with the previous notions of center of mass.Comment: Latex, p.75, Invited contribution for the book {\it Atomic and Molecular Clusters: New Research} (Nova Science

    Charged Particles and the Electro-Magnetic Field in Non-Inertial Frames of Minkowski Spacetime: I. Admissible 3+1 Splittings of Minkowski Spacetime and the Non-Inertial Rest Frames

    Full text link
    By using the 3+1 point of view and parametrized Minkowski theories we develop the theory of {\it non-inertial} frames in Minkowski space-time. The transition from a non-inertial frame to another one is a gauge transformation connecting the respective notions of instantaneous 3-space (clock synchronization convention) and of the 3-coordinates inside them. As a particular case we get the extension of the inertial rest-frame instant form of dynamics to the non-inertial rest-frame one. We show that every isolated system can be described as an external decoupled non-covariant canonical center of mass (described by frozen Jacobi data) carrying a pole-dipole structure: the invariant mass and an effective spin. Moreover we identify the constraints eliminating the internal 3-center of mass inside the instantaneous 3-spaces. In the case of the isolated system of positive-energy scalar particles with Grassmann-valued electric charges plus the electro-magnetic field we obtain both Maxwell equations and their Hamiltonian description in non-inertial frames. Then by means of a non-covariant decomposition we define the non-inertial radiation gauge and we find the form of the non-covariant Coulomb potential. We identify the coordinate-dependent relativistic inertial potentials and we show that they have the correct Newtonian limit. In the second paper we will study properties of Maxwell equations in non-inertial frames like the wrap-up effect and the Faraday rotation in astrophysics. Also the 3+1 description without coordinate-singularities of the rotating disk and the Sagnac effect will be given, with added comments on pulsar magnetosphere and on a relativistic extension of the Earth-fixed coordinate system.Comment: This paper and the second one are an adaptation of arXiv 0812.3057 for publication on Int.J.Geom. Methods in Modern Phys. 77

    Explorations in price (un)fairness.

    Get PDF
    Consumers may use multiple reference points-including cost of goods, past prices, and competitive prices-to judge price fairness. Across a series of studies we show that consumers are inclined to overestimate profits, often to an extreme extent. We further demonstrate that prices are perceived to be unfair because consumers fail to take into account vendor costs, underestimate the effects of inflation, and attribute competitive price differences to profits. Potential corrective interventions by marketers-such as cueing costs, providing historical price information, and explaining price differences-were insufficient to eliminate unfairness perceptions. In addition, prices for goods were found to be stickier than prices for services and therefore were especially susceptible to these systematic perceptions of unfairness.Prices; Studies; Costs; Effects;

    ADM Pseudotensors, Conserved Quantities and Covariant Conservation Laws in General Relativity

    Full text link
    The ADM formalism is reviewed and techniques for decomposing generic components of metric, connection and curvature are obtained. These techniques will turn out to be enough to decompose not only Einstein equations but also covariant conservation laws. Then a number of independent sets of hypotheses that are sufficient (though non-necessary) to obtain standard ADM quantities (and Hamiltonian) from covariant conservation laws are considered. This determines explicitely the range in which standard techniques are equivalent to covariant conserved quantities. The Schwarzschild metric in different coordinates is then considered, showing how the standard ADM quantities fail dramatically in non-Cartesian coordinates or even worse when asymptotically flatness is not manifest; while, in view of their covariance, covariant conservation laws give the correct result in all cases.Comment: 40 page
    corecore