19,164 research outputs found

    Opposite Thermodynamic Arrows of Time

    Full text link
    A model in which two weakly coupled systems maintain opposite running thermodynamic arrows of time is exhibited. Each experiences its own retarded electromagnetic interaction and can be seen by the other. The possibility of opposite-arrow systems at stellar distances is explored and a relation to dark matter suggested.Comment: To appear in Phys. Rev. Let

    Fourlined Plant Bug (Hemiptera: Miridae), a Reappraisal: Life History, Host Plants, and Plant Response to Feeding

    Get PDF
    Phenology of the fourlined plant bug, Poecilocapsus lineatus, is presented for southcen- tral Pennsylvania; life history and habits are re-examined. Although breeding was previously thought to occur only on woody plants, we found that nymphs develop on numerous herbs. An extensive list of hosts, more than 250 species in 57 families, is compiled from the literature and the authors\u27 observations; preferences are noted for plants in the Labiatae, Solanaceae, and Compositae. Damage consists of lesions on foliage, the size and shape of the spots varying with leaf texture, pubescence, and venation. Plant response to feeding is immediately visible, the lesions seeming to appear simultaneously with insertion of the bug\u27s stylets. Histolysis of plant tissues, the most rapid response to mind feeding yet reported, is attributed to a potent lipid enzyme whose active constituents are under investigation

    Bubbles created from vacuum fluctuation

    Get PDF
    We show that the bubbles S2×S2S^2\times S^2can be created from vacuum fluctuation in certain De Sitter universe, so the space-time foam-like structure might really be constructed from bubbles of S2×S2S^2\times S^2 in the very early inflating phase of our universe. But whether such foam-like structure persisted during the later evolution of the universe is a problem unsolved now.Comment: 6 page

    John Robert Eyer: Entomological Work in Pennsylvania and Lists of Publications

    Get PDF
    (excerpt) John Robert Eyer died at Carlsbad, New Mexico, on January 30, 1976. J. G. Watts and W. A. Iselin (1976), his former colleagues in the Department of Botany and Entomology at New Mexico State University, Las Cruces, wrote an obituary and quite naturally focused on Eyer\u27s work at the University\u27s Agricultural Experiment Station. Since Dr. Eyer\u27s first positions in entomology were in Pennsylvania, we have prepared this biographical sketch to preserve the record of his early accomplishments

    Yang-Mills gravity in biconformal space

    Get PDF
    We write a gravity theory with Yang-Mills type action using the biconformal gauging of the conformal group. We show that the resulting biconformal Yang-Mills gravity theories describe 4-dim, scale-invariant general relativity in the case of slowly changing fields. In addition, we systematically extend arbitrary 4-dim Yang-Mills theories to biconformal space, providing a new arena for studying flat space Yang-Mills theories. By applying the biconformal extension to a 4-dim pure Yang-Mills theory with conformal symmetry, we establish a 1-1, onto mapping between a set of gravitational gauge theories and 4-dim, flat space gauge theories.Comment: 27 pages; paper emphasis shifted to focus on gravity; references adde

    Phase field modeling of electrochemistry II: Kinetics

    Full text link
    The kinetic behavior of a phase field model of electrochemistry is explored for advancing (electrodeposition) and receding (electrodissolution) conditions in one dimension. We described the equilibrium behavior of this model in [J. E. Guyer, W. J. Boettinger, J.A. Warren, and G. B. McFadden, ``Phase field modeling of electrochemistry I: Equilibrium'', cond-mat/0308173]. We examine the relationship between the parameters of the phase field method and the more typical parameters of electrochemistry. We demonstrate ohmic conduction in the electrode and ionic conduction in the electrolyte. We find that, despite making simple, linear dynamic postulates, we obtain the nonlinear relationship between current and overpotential predicted by the classical ``Butler-Volmer'' equation and observed in electrochemical experiments. The charge distribution in the interfacial double layer changes with the passage of current and, at sufficiently high currents, we find that the diffusion limited deposition of a more noble cation leads to alloy deposition with less noble species.Comment: v3: To be published in Phys. Rev. E v2: Attempt to work around turnpage bug. Replaced color Fig. 4a with grayscale 13 pages, 7 figures in 10 files, REVTeX 4, SIunits.sty, follows cond-mat/030817

    Drug Predictive Cues Activate Aversion-Sensitive Striatal Neurons That Encode Drug Seeking

    Get PDF
    Drug-associated cues have profound effects on an addict’s emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking

    Non-analytical power law correction to the Einstein-Hilbert action: gravitational wave propagation

    Full text link
    We analyze the features of the Minkowskian limit of a particular non-analytical f(R) model, whose Taylor expansion in the weak field limit does not hold, as far as gravitational waves (GWs) are concerned. We solve the corresponding Einstein equations and we find an explicit expression of the modified GWs as the sum of two terms, i.e. the standard one and a modified part. As a result, GWs in this model are not transverse, and their polarization is different from that of General Relativity. The velocity of the GW modified part depends crucially on the parameters characterizing the model, and it mostly results much smaller than the speed of light. Moreover, this investigation allows one to further test the viability of this particular f(R) gravity theory as far as interferometric observations of GWs are concerned.Comment: 18 pages, 3 figure

    Understanding light quanta: First quantization of the free electromagnetic field

    Full text link
    The quantization of the electromagnetic field in vacuum is presented without reference to lagrangean quantum field theory. The equal time commutators of the fields are calculated from basic principles. A physical discussion of the commutators suggest that the electromagnetic fields are macroscopic emergent properties of more fundamental physical system: the photons

    Fast algorithms for computing defects and their derivatives in the Regge calculus

    Full text link
    Any practical attempt to solve the Regge equations, these being a large system of non-linear algebraic equations, will almost certainly employ a Newton-Raphson like scheme. In such cases it is essential that efficient algorithms be used when computing the defect angles and their derivatives with respect to the leg-lengths. The purpose of this paper is to present details of such an algorithm.Comment: 38 pages, 10 figure
    corecore