21,644 research outputs found

    Femtosecond real-time probing of reactions. IX. Hydrogen-atom transfer

    Get PDF
    The real-time dynamics of hydrogen-atom-transfer processes under collisionless conditions are studied using femtosecond depletion techniques. The experiments focus on the methyl salicylate system, which exhibits ultrafast hydrogen motion between two oxygen atoms due to molecular tautomerization, loosely referred to as intramolecular ''proton'' transfer. To test for tunneling and mass effects on the excited potential surface, we also studied deuterium and methyl-group substitutions. We observe that the motion of the hydrogen, under collisionless conditions, takes place within 60 fs. At longer times, on the picosecond time scale, the hydrogen-transferred form decays with a threshold of 15.5 kJ/mol; this decay behavior was observed up to a total vibrational energy of approximately 7200 cm-1. The observed dynamics provide the global nature of the motion, which takes into account bonding before and after the motion, and the evolution of the wave packet from the initial nonequilibrium state to the transferred form along the O-H-O reaction coordinate. The vibrational periods (2pi/omega) of the relevant modes range from 13 fs (the OH stretch) to 190 fs (the low-frequency distortion) and the motion involves (in part) these coordinates. The intramolecular vibrational-energy redistribution dynamics at longer times are important to the hydrogen-bond dissociation and to the nonradiative decay of the hydrogen-transferred form

    Error correction in ensemble registers for quantum repeaters and quantum computers

    Full text link
    We propose to use a collective excitation blockade mechanism to identify errors that occur due to disturbances of single atoms in ensemble quantum registers where qubits are stored in the collective population of different internal atomic states. A simple error correction procedure and a simple decoherence-free encoding of ensemble qubits in the hyperfine states of alkali atoms are presented.Comment: 4 pages, 2 figure

    Compact conformally Kahler Einstein-Weyl manifolds

    Get PDF
    We give a classification of compact conformally Kahler Einstein-Weyl manifolds whose Ricci tensor is hermitian.Comment: 11 page

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    Full text link
    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner-Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light-matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized absorbance cells for optical detection in lab-on-a-chip systems.Comment: Paper accepted for the "Special Issue OWTNM 2007" edited by A. Lavrinenko and P. J. Robert

    Contributions of Mammalian Chimeras to Pluripotent Stem Cell Research.

    Get PDF
    Chimeras are widely acknowledged as the gold standard for assessing stem cell pluripotency, based on their capacity to test donor cell lineage potential in the context of an organized, normally developing tissue. Experimental chimeras provide key insights into mammalian developmental mechanisms and offer a resource for interrogating the fate potential of various pluripotent stem cell states. We highlight the applications and current limitations presented by intra- and inter-species chimeras and consider their future contribution to the stem cell field. Despite the technical and ethical demands of experimental chimeras, including human-interspecies chimeras, they are a provocative resource for achieving regenerative medicine goals.British Heart Foundation Centre of Regenerative Medicine, Wellcome Trust, Medical Research Council Cambridge Stem Cell Institute, Cambridge NIHR Biomedical Research CentreThis is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.stem.2016.07.01

    Correlation-induced conductance suppression at level degeneracy in a quantum dot

    Get PDF
    The large, level-dependent g-factors in an InSb nanowire quantum dot allow for the occurrence of a variety of level crossings in the dot. While we observe the standard conductance enhancement in the Coulomb blockade region for aligned levels with different spins due to the Kondo effect, a vanishing of the conductance is found at the alignment of levels with equal spins. This conductance suppression appears as a canyon cutting through the web of direct tunneling lines and an enclosed Coulomb blockade region. In the center of the Coulomb blockade region, we observe the predicted correlation-induced resonance, which now turns out to be part of a larger scenario. Our findings are supported by numerical and analytical calculations.Comment: 5 pages, 4 figure

    Human-Mouse Chimerism Validates Human Stem Cell Pluripotency.

    Get PDF
    Pluripotent stem cells are defined by their capacity to differentiate into all three tissue layers that comprise the body. Chimera formation, generated by stem cell transplantation to the embryo, is a stringent assessment of stem cell pluripotency. However, the ability of human pluripotent stem cells (hPSCs) to form embryonic chimeras remains in question. Here we show using a stage-matching approach that human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) have the capacity to participate in normal mouse development when transplanted into gastrula-stage embryos, providing in vivo functional validation of hPSC pluripotency. hiPSCs and hESCs form interspecies chimeras with high efficiency, colonize the embryo in a manner predicted from classical developmental fate mapping, and differentiate into each of the three primary tissue layers. This faithful recapitulation of tissue-specific fate post-transplantation underscores the functional potential of hPSCs and provides evidence that human-mouse interspecies developmental competency can occur.This work was supported by National Institutes of Health grant No. 1R21ID012228 (R.A.P.); Medical Research Council/British Heart Foundation grant No. G1000847 (R.A.P.); British Heart Foundation Ph.D. studentship (V.L.M.); British Heart Foundation Centre of Regenerative Medicine (Oxford grant RM/13/3/3015); core support from the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute; and the Cambridge NIHR Biomedical Research Centre.This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.stem.2015.11.01

    Tur\'an Graphs, Stability Number, and Fibonacci Index

    Full text link
    The Fibonacci index of a graph is the number of its stable sets. This parameter is widely studied and has applications in chemical graph theory. In this paper, we establish tight upper bounds for the Fibonacci index in terms of the stability number and the order of general graphs and connected graphs. Tur\'an graphs frequently appear in extremal graph theory. We show that Tur\'an graphs and a connected variant of them are also extremal for these particular problems.Comment: 11 pages, 3 figure
    • 

    corecore