14 research outputs found

    The Sequence of a Stepwise AdE Reaction and Intramolecular Pauson-Khand Cycloaddition as an Entry into the Synthesis of Polycyclic Compounds

    No full text
    A stepwise AdE acylmethoxylation across the double bond of dicobalt hexacarbonyl complexes (DCHCC) of conjugated enynes was elaborated as an efficient and general route for the synthesis of DCHCC of 1,6-enynes containing a combination of five- and six-membered-ring fragments. Depending on the structure of these adducts, the latter either were subjected to 1,2-carbnyl reduction followed by an intramolecular Pauson-Khand (IMPK) cyclization or were directly utilized as substrates for this process. A list of model polycyclic systems which were assembled using this approach includes [5.5.5] angularly fused compounds, [6.5.5] and [5.5.5] linearly fused tricyclics, and linearly and angularly fused [6.5.5.5] and [5.5.5.5] tetracyclic products. A novel convergent and general method for the synthesis of various cyclic compounds is suggested on the basis of the AdE-IMPK tandem sequence as the key steps for the assemblage of polycyclic frameworks. This option seems to be especially promising for the tetracyclic derivatives mentioned above, as in these cases only two operationally simple steps are required to convert read:\u27-/ available starting blocks into the target structures related to natural polyquinanes

    Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers

    Get PDF
    The electrical properties and deep trap spectra were compared for near-UV GaN/InGaN quantum well (QW) structures grown on free-standing GaN substrates. The structures differed by the presence or absence of a thin (110 nm) InGaN layer inserted between the high temperature GaN buffer and the QW region. Capacitance-voltage profiling with monochromatic illumination showed that in the InGaN underlayer (UL), the density of deep traps with optical threshold near 1.5 eV was much higher than in the QW and higher than for structures without InGaN. Irradiation with 5 MeV electrons strongly increased the concentration of these 1.5 eV traps in the QWs, with the increase more pronounced for samples without InGaN ULs. The observations are interpreted using the earlier proposed model explaining the impact of In-containing underlayers by segregation of native defects formed during growth of GaN near the surface and trapping of these surface defects by In atoms of the InGaN UL, thus preventing them from infiltrating the InGaN QW region. Deep level transient spectroscopy (DLTS) also revealed major differences in deep trap spectra in the QWs and underlying layers of the samples with and without InGaN ULs. Specifically, the introduction of the InGaN UL stimulates changing the dominant type of deep traps. Irradiation increases the densities of these traps, with the increase being more pronounced for samples without the InGaN UL. It is argued that light emitting diodes (LEDs) with InGaN UL should demonstrate a higher radiation tolerance than LEDs without InGaN UL. (C) 2020 Elsevier B.V. All rights reserved

    Effects of 5 MeV electron irradiation on deep traps and electroluminescence from near-UV InGaN/GaN single quantum well light-emitting diodes with and without InAlN superlattice underlayer

    No full text
    The electrical properties, electroluminescence (EL) power output and deep trap spectra were studied before and after 5 MeV electron irradiation of near-UV single-quantum-well (SQW) light-emitting diodes (LED) structures differing by the presence or absence of InAlN superlattice underlayers (InAlN SL UL). The presence of the underlayer is found to remarkably increase the EL output power and the radiation tolerance of LEDs, which correlates with a much lower and more slowly changing density of deep traps in the QW region with radiation dose, and the higher lifetime of charge carriers, manifested by higher short-circuit current and open-circuit voltage in current-voltage characteristics under illumination. The observed phenomena are explained by the capture of native defects segregated at the growing surface by In atoms in the underlayer which traps them in the underlayer and prevents their penetration into the QW region

    Effects of 5 MeV electron irradiation on deep traps and electroluminescence from near-UV InGaN/GaN single quantum well light-emitting diodes with and without InAlN superlattice underlayer

    No full text
    The electrical properties, electroluminescence (EL) power output and deep trap spectra were studied before and after 5 MeV electron irradiation of near-UV single-quantum-well (SQW) light-emitting diodes (LED) structures differing by the presence or absence of InAlN superlattice underlayers (InAlN SL UL). The presence of the underlayer is found to remarkably increase the EL output power and the radiation tolerance of LEDs, which correlates with a much lower and more slowly changing density of deep traps in the QW region with radiation dose, and the higher lifetime of charge carriers, manifested by higher short-circuit current and open-circuit voltage in current-voltage characteristics under illumination. The observed phenomena are explained by the capture of native defects segregated at the growing surface by In atoms in the underlayer which traps them in the underlayer and prevents their penetration into the QW region

    Effects of InAlN underlayer on deep traps detected in near-UV InGaN/GaN single quantum well light-emitting diodes

    No full text
    Two types of near-UV light-emitting diodes (LEDs) with an InGaN/GaN single quantum well (QW) differing only in the presence or absence of an underlayer (UL) consisting of an InAlN/GaN superlattice (SL) were examined. The InAlN-based ULs were previously shown to dramatically improve internal quantum efficiency of near-UV LEDs, via a decrease in the density of deep traps responsible for nonradiative recombination in the QW region. The main differences between samples with and without UL were (a) a higher compensation of Mg acceptors in the p-GaN:Mg contact layer of the sample without UL, which correlates with the presence of traps with an activation energy of 0.06 eV in the QW region, (b) the presence of deep electron traps with levels 0.6 eV below the conduction band edge (E-c) (ET1) and at E-c 0.77 eV (ET2) in the n-GaN spacer underneath the QW, and the presence of hole traps (HT1) in the QW, 0.73 eV above the valence band edge in the sample without UL (no traps could be detected in the sample with UL), and (c) a high density of deep traps with optical ionization energy close to 1.5 eV for the LEDs without UL. Irradiation with 5 MeV electrons led to a strong decrease in the electroluminescence (EL) intensity in the LEDs without UL, while for the samples with UL, such irradiation had little effect on the EL signal at high driving current, although the level of driving currents necessary to have a measurable EL signal increased by about an order of magnitude. This is despite the 5 times higher starting EL signal of the sample with UL. Irradiation also led to the appearance in the LEDs with UL of the ET1 and HT1 deep traps, but with concentration much lower than without the UL, and to a considerable increase in the Mg compensation ratio
    corecore