4 research outputs found
Genetic Studies of a Cluster of Acute Lymphoblastic Leukemia Cases in Churchill County, Nevada
OBJECTIVE: In a study to identify exposures associated with 15 cases of childhood leukemia, we found levels of tungsten, arsenic, and dichlorodiphenyldichloroethylene in participants to be higher than mean values reported in the National Report on Human Exposure to Environmental Chemicals. Because case and comparison families had similar levels of these contaminants, we conducted genetic studies to identify gene polymorphisms that might have made case children more susceptible than comparison children to effects of the exposures. DESIGN: We compared case with comparison children to determine whether differences existed in the frequency of polymorphic genes, including genes that code for enzymes in the folate and purine pathways. We also included discovery of polymorphic forms of genes that code for enzymes that are inhibited by tungsten: xanthine dehydrogenase, sulfite oxidase (SUOX gene), and aldehyde oxidase. PARTICIPANTS: Eleven case children were age- and sex-matched with 42 community comparison children for genetic analyses. Twenty parents of case children also contributed to the analyses. RESULTS: One bilalleleic gene locus in SUOX was significantly associated with either case or comparison status, depending on which alleles the child carried (without adjusting for multiple comparisons). CONCLUSIONS: Although genetic studies did not provide evidence that a common agent or genetic susceptibility factor caused the leukemias, the association between a SUOX gene locus and disease status in the presence of high tungsten and arsenic levels warrants further investigation. RELEVANCE: Although analyses of community clusters of cancer have rarely identified causes, these findings have generated hypotheses to be tested in subsequent studies
Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves
We advance our prior energy- and flux-budget turbulence closure model
(Zilitinkevich et al., 2007, 2008) for the stably stratified atmospheric flows
and extend it accounting for additional vertical flux of momentum and
additional productions of turbulent kinetic energy, turbulent potential energy
(TPE) and turbulent flux of potential temperature due to large-scale internal
gravity waves (IGW). Main effects of IGW are following: the maximal value of
the flux Richardson number (universal constant 0.2-0.25 in the no-IGW regime)
becomes strongly variable. In the vertically homogeneous stratification, it
increases with increasing wave energy and can even exceed 1. In the
heterogeneous stratification, when IGW propagate towards stronger
stratification, the maximal flux Richardson number decreases with increasing
wave energy, reaches zero and then becomes negative. In other words, the
vertical flux of potential temperature becomes counter-gradient. IGW also
reduce anisotropy of turbulence and increase the share of TPE in the turbulent
total energy. Depending on the direction (downward or upward), IGW either
strengthen or weaken the total vertical flux of momentum. Predictions from the
proposed model are consistent with available data from atmospheric and
laboratory experiments, direct numerical simulations and large-eddy
simulations.Comment: 37 pages, 5 figures, revised versio