29 research outputs found
Recommended from our members
CloudSat and CALIPSO within the A-Train: ten years of actively observing the Earth system
One of the most successful demonstrations of an integrated approach to observe Earth from multiple perspectives is the A-Train satellite constellation (e.g. Stephens et al., 2002). The science enabled by this constellation flourished with the introduction of the two active sensors carried by the NASA CloudSat and the NASA/CNES Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellites that were launched together on April 28th, 2006. These two missions have provided a 10-year demonstration of coordinated formation flying that made it possible to develop integrated products and that offered new insights on key atmospheric processes. The progress achieved over this decade of observations, summarized in this paper, clearly demonstrate the fundamental importance of the vertical structure of clouds and aerosol for understanding the influences of the larger scale atmospheric circulation on aerosol, the hydrological cycle, the cloud-scale physics and on the formation of the major storm systems of Earth. The research also underscored inherent ambiguities in radiance data in describing cloud properties and how these active systems have greatly enhanced passive observation. It is now clear that monitoring the vertical structure of clouds and aerosol is essential and a climate data record is now being constructed. These pioneering efforts are to be continued with EarthCARE mission planned for launch in 2019
Recommended from our members
The First 30 years of GEWEX
International audienceAbstract The Global Energy and Water Cycle EXchanges (GEWEX) project was created more than thirty years ago within the framework of the World Climate Research Programme (WCRP). The aim of this initiative was to address major gaps in our understanding of Earthâs energy and water cycles given a lack of information about the basic fluxes and associated reservoirs of these cycles. GEWEX sought to acquire and set standards for climatological data on variables essential for quantifying water and energy fluxes and for closing budgets at the regional and global scales. In so doing, GEWEX activities led to a greatly improved understanding of processes and our ability to predict them. Such understanding was viewed then, as it remains today, essential for advancing weather and climate prediction from global to regional scales. GEWEX has also demonstrated over time the importance of a wider engagement of different communities and the necessity of international collaboration for making progress on understanding and on the monitoring of the changes in the energy and water cycles under ever increasing human pressures. This paper reflects on the first 30 years of evolution and progress that has occurred within GEWEX. This evolution is presented in terms of three main phases of activity. Progress toward the main goals of GEWEX is highlighted by calling out a few achievements from each phase. A vision of the path forward for the coming decade, including the goals of GEWEX for the future, are also described
Recommended from our members
The observed state of the water cycle in the early twenty-first century
Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8289â8318, doi:10.1175/JCLI-D-14-00555.1.This study quantifies mean annual and monthly fluxes of Earthâs water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.This research was funded by multiple
grants from NASAâs Energy and Water Cycle
Study (NEWS) program.2016-05-0
Measuring global ocean heat content to estimate the earth energy imbalance
The energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4â1 Wmâ2). This imbalance is coined Earthâs Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This accumulation of heat can be tracked with the ocean observing system such that today, the monitoring of Ocean Heat Content (OHC) and its long-term change provide the most efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System
Quantifying cloud adjustments and the radiative forcing due to aerosolâcloud interactions in satellite observations of warm marine clouds
Aerosolâcloud interactions and their resultant forcing remains one of the largest sources of uncertainty in future climate scenarios. The effective radiative forcing due to aerosolâcloud interactions (ERFaci) is a combination of two different effects, namely how aerosols modify cloud brightness (RFaci, intrinsic) and how cloud extent reacts to aerosol (cloud adjustments CA; extrinsic). Using satellite observations of warm clouds from the NASA A-Train constellation from 2007 to 2010 along with MERRA-2 Reanalysis and aerosol from the SPRINTARS model, we evaluate the ERFaci in warm, marine clouds and its components, the RFaciwarm and CAwarm, while accounting for the liquid water path and local environment. We estimate the ERFaciwarm to be â0.32±0.16âWmâ2. The RFaciwarm dominates the ERFaciwarm contributing 80â% (â0.21±0.15âWmâ2), while the CAwarm enhances this cooling by 20â% (â0.05±0.03âWmâ2). Both the RFaciwarm and CAwarm vary in magnitude and sign regionally and can lead to opposite, negating effects under certain environmental conditions. Without considering the two terms separately and without constraining cloudâenvironment interactions, weak regional ERFaciwarm signals may be erroneously attributed to a damped susceptibility to aerosol
Assessing Latent and Kinetic Energy Trend Changes in Extratropical Cyclones From 1940 to 2020: Results From ERAâ5 Reanalysis
Abstract Baroclinic or extratropical cyclones (ETCs) transport heat and moisture to higher latitudes, making it fundamentally important to understand how their influence changes as Earth's climate evolves. A 2â8âday Lanzcos bandpass filter is applied to European Center for Medium Range Weather Forecasting 5th Generation Reanalysis latent energy (LE) and kinetic energy (KE) data to assess how ETCs have changed from 1940 to 2020 relative to fullâscale changes in LE and KE. Fullâscale KE trends are more positive at high latitudes relative to midâlatitudes, confirming several previous studies that ETCs have shifted poleward. LE increases have occurred globally, and trends in both fullâscale LE and KE are statistically significant in the southern high latitudes. The high relative fractional contribution of 2â8âday LE wave power and trend clearly suggest that ETCs have an increasingly important role in poleward moisture transport but are not solely responsible for the observed statistically significant increases
Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations
Space-borne observations reveal that 20â40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiativeâconvective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depthâsimilar to Large-Eddy Simulation (LES) studiesâwhich reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions. Keywords: Warm rain; Shallow cumulus; Congestus; Circulations; Climat
Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions
Atmosphere and surface properties are routinely retrieved from satellite measurements and extensively used in weather forecast and climate analysis. Satellite missions dedicated to fill the gap of far-infrared (far-IR) observations are scheduled to be launched this decade. To explore mid-infrared (mid-IR) and far-IR joint retrievals for the future far-IR satellite missions, this study uses an optimal-estimation-based method to retrieve atmospheric specific humidity and temperature profiles, surface skin temperature, and surface spectral emissivity from the Infrared Interferometer Sounder-D (IRIS-D) measurements in 1970, the only existing spaceborne far-IR spectral observations with global coverage. Based on a set of criteria, two cases in the Arctic, which are most likely under clear-sky conditions, are chosen for the retrieval experiments. Information content analysis suggests that the retrieved surface skin temperature and the mid-IR surface spectral emissivity are highly sensitive to the true values while the retrieval estimates of far-IR surface emissivity are subject to the variation of water vapor abundance. Results show that radiances based on the retrieved state variables are more consistent with the IRIS-D observations compared to those based on the reanalysis data. Retrieval estimates of the state variables along with retrieval uncertainties generally fall within reasonable ranges. The relative uncertainties of retrieved state variables decrease compared to the a priori relative uncertainties. In addition, the necessity to retrieve surface emissivity is corroborated by a parallel retrieval experiment assuming a blackbody surface emissivity that has revealed significant distortions of retrieved specific humidity and temperature profiles in the Arctic lower troposphere.Key PointsAtmospheric profiles and surface properties are simultaneously retrieved from satellite observations made 50Â years agoCompared to reanalysis data, the retrieval estimates produce radiances which are more consistent with the observationsRetrievals of humidity and temperature profiles in the lower troposphere can be considerably affected by the surface spectral emissivityPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/176101/1/ess21415.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/176101/2/ess21415_am.pd