12 research outputs found

    Differential Serotonergic Modulation of Synaptic Inputs to the Olfactory Cortex

    Get PDF
    Serotonin (5-hydroxytriptamine, 5-HT) is an important monoaminergic neuromodulator involved in a variety of physiological and pathological functions. It has been implicated in the regulation of sensory functions at various stages of multiple modalities, but its mechanisms and functions in the olfactory system have remained elusive. Combining electrophysiology, optogenetics and pharmacology, here we show that afferent (feed-forward) pathway-evoked synaptic responses are boosted, whereas feedback responses are suppressed by presynaptic 5-HT1B receptors in the anterior piriform cortex (aPC) in vitro. Blocking 5-HT1B receptors also reduces the suppressive effects of serotonergic photostimulation of baseline firing in vivo. We suggest that by regulating the relative weights of synaptic inputs to aPC, 5-HT finely tunes sensory inputs in the olfactory cortex

    HCN channels and absence seizures

    Get PDF
    Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications

    A Distinct Class of Slow ( approximately 0.2-2 Hz) Intrinsically Bursting Layer 5 Pyramidal Neurons Determines UP/DOWN State Dynamics in the Neocortex

    Get PDF
    During sleep and anesthesia, neocortical neurons exhibit rhythmic UP/DOWN membrane potential states. Although UP states are maintained by synaptic activity, the mechanisms that underlie the initiation and robust rhythmicity of UP states are unknown. Using a physiologically validated model of UP/DOWN state generation in mouse neocortical slices whereby the cholinergic tone present in vivo is reinstated, we show that the regular initiation of UP states is driven by an electrophysiologically distinct subset of morphologically identified layer 5 neurons, which exhibit intrinsic rhythmic low-frequency burst firing at approximately 0.2-2 Hz. This low-frequency bursting is resistant to block of glutamatergic and GABAergic transmission but is absent when slices are maintained in a low Ca(2+) medium (an alternative, widely used model of cortical UP/DOWN states), thus explaining the lack of rhythmic UP states and abnormally prolonged DOWN states in this condition. We also characterized the activity of various other pyramidal and nonpyramidal neurons during UP/DOWN states and found that an electrophysiologically distinct subset of layer 5 regular spiking pyramidal neurons fires earlier during the onset of network oscillations compared with all other types of neurons recorded. This study, therefore, identifies an important role for cell-type-specific neuronal activity in driving neocortical UP states

    Higher-order thalamic nuclei facilitate the generalization and maintenance of spike-and-wave discharges of absence seizures

    Get PDF
    Spike-and-wave discharges (SWDs), generated by the cortico-thalamo-cortical (CTC) network, are pathological, large amplitude oscillations and the hallmark of absence seizures (ASs). SWDs begin in a cortical initiation network in both humans and animal models, including the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), where it is located in the primary somatosensory cortex (S1). The behavioral manifestation of an AS occurs when SWDs spread from the cortical initiation site to the whole brain, however, the mechanisms behind this rapid propagation remain unclear. Here we investigated these processes beyond the principal CTC network, in higher-order (HO) thalamic nuclei (lateral posterior (LP) and posterior (PO) nuclei) since their diffuse connectivity and known facilitation of intracortical communications make these nuclei key candidates to support SWD generation and maintenance. In freely moving GAERS, multi-site LFP in LP, PO and multiple cortical regions revealed a novel feature of SWDs: during SWDs there are short periods (named SWD-breaks) when cortical regions far from S1, such the primary visual cortex (V1), become transiently unsynchronized from the ongoing EEG rhythm. Inactivation of HO nuclei with local muscimol injections or optogenetic perturbation of HO nuclei activity increased the occurrence of SWD-breaks and the former intervention also increased the SWD propagation-time from S1. The neural underpinnings of these findings were explored further by silicon probe recordings from single units of PO which uncovered two previously unknown groups of excitatory neurons based on their burst firing dynamics at SWD onset. Moreover, a switch from tonic to burst firing at SWD onset was shown to be an important feature since it was much less prominent for non-generalized events, i.e. SWDs that remained local to S1. Additionally, one group of neurons showed a reverse of this switch during SWD-breaks, demonstrating the importance of this firing pattern throughout the SWD. In summary, these results support the view that multiple HO thalamic nuclei are utilized at SWD onset and contribute to cortical synchrony throughout the paroxysmal discharge

    Dual function of thalamic low-vigilance state oscillations: Rhythm-regulation and plasticity

    Get PDF
    During inattentive wakefulness and non-rapid eye movement (NREM) sleep, the neocortex and thalamus cooperatively engage in rhythmic activities that are exquisitely reflected in the electroencephalogram as distinctive rhythms spanning a range of frequencies from <1 Hz slow waves to 13 Hz alpha waves. In the thalamus, these diverse activities emerge through the interaction of cell-intrinsic mechanisms and local and long-range synaptic inputs. One crucial feature, however, unifies thalamic oscillations of different frequencies: repetitive burst firing driven by voltage-dependent Ca(2+) spikes. Recent evidence reveals that thalamic Ca(2+) spikes are inextricably linked to global somatodendritic Ca(2+) transients and are essential for several forms of thalamic plasticity. Thus, we propose herein that alongside their rhythm-regulation function, thalamic oscillations of low-vigilance states have a plasticity function that, through modifications of synaptic strength and cellular excitability in local neuronal assemblies, can shape ongoing oscillations during inattention and NREM sleep and may potentially reconfigure thalamic networks for faithful information processing during attentive wakefulness
    corecore