12 research outputs found

    Changes in Greenland’s peripheral glaciers linked to the North Atlantic Oscillation

    Get PDF
    Glaciers and ice caps peripheral to the main Greenland Ice Sheet contribute markedly to sea-level rise1,2,3. Their changes and variability, however, have been difficult to quantify on multi-decadal timescales due to an absence of long-term data4. Here, using historical aerial surveys, expedition photographs, spy satellite imagery and new remote-sensing products, we map glacier length fluctuations of approximately 350 peripheral glaciers and ice caps in East and West Greenland since 1890. Peripheral glaciers are found to have recently undergone a widespread and significant retreat at rates of 12.2 m per year and 16.6 m per year in East and West Greenland, respectively; these changes are exceeded in severity only by the early twentieth century post-Little-Ice-Age retreat. Regional changes in ice volume, as reflected by glacier length, are further shown to be related to changes in precipitation associated with the North Atlantic Oscillation (NAO), with a distinct east–west asymmetry; positive phases of the NAO increase accumulation, and thereby glacier growth, in the eastern periphery, whereas opposite effects are observed in the western periphery. Thus, with projected trends towards positive NAO in the future5,6, eastern peripheral glaciers may remain relatively stable, while western peripheral glaciers will continue to diminish

    A checklist for using Beals’ index with incomplete floristic monitoring data : reply to Christensen et al. (2021): Problems in using Beals’ index to detect species trends in incomplete floristic monitoring data

    Get PDF
    Christensen et al. criticized the application of Beals’ index of sociological favourability to adjust for incomplete species lists when comparing repeated surveys. Their main argument was that using Beals’ conditional occurrence probabilities would systematically underestimate biodiversity change compared to using observed frequencies. Although this might be the case for rare species, as we explicitly stated in our original publication, we here use a worked-out example to show that this criticism is unjustified for species that are sufficiently represented in the reference data set. In our opinion, the misconception derives from ignoring one of the key requirements for applying Beal's index, which is the use of a sufficiently large reference data set to derive a reliable co occurrence matrix. We here show how the predicted probability for the occurrence of a species depends on the size of the reference data set and give recommendations on the premises for applying Beals’ approach for monitoring purposes

    Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends

    Get PDF
    Aim: The loss of biodiversity has raised serious concerns about the entailing losses of ecosystem services. Here, we explore the potential of repeated habitat mapping data to identify floristic changes over time. Using one German federal state as a case study, we assessed floristic changes between the 1980s and 2010s. These habitat data have great potential for analysis because of their high spatial coverage while also posing methodological challenges such as incomplete observation data. We developed a modelling approach that accounts for incomplete observations and explored the ability to detect temporal trends. Location: The Federal State of Schleswig‐Holstein (Germany) Methods: We compiled plant species lists from the earliest (1980s) and most recent (2010s) habitat mapping survey and aligned differing habitat definitions across mapping campaigns. A total of 5,503 mapped polygons, each with a list of species records, intersected the two surveys. We accounted for underrecorded species by assigning occurrence probabilities, based on species co‐occurrence information across all surveys, using Beals' index and tested the robustness of this approach by simulation experiments. For those species with significant increases and decreases in occurrence probability, we linked these trends to the species' functional characteristics. Results: We found a systematic loss of species that are moderately threatened. Species that indicate low nitrogen supply and high soil moisture declined, suggesting a shift towards a more eutrophic and drier landscape. Importantly, assessing specific plant traits associated with losses, we also detected a decrease in species with reddish and blueish flowers and species providing nectar, pointing to a decrease of insect‐pollinated taxa. Main conclusions: The identified changes raise concerns that plant biodiversity has fundamentally changed over the last three decades, with concomitant consequences for ecosystem services, especially pollination. Given the general lack of historical standardized data, our approach for trend analyses using incomplete observation data may be widely applicable to assess long‐term biodiversity change

    Sphagnum growth under N saturation: interactive effects of water level and P or K fertilization

    No full text
    Abstract Sphagnum biomass is a promising material that could be used as a substitute for peat in growing media and can be sustainably produced by converting existing drainage‐based peatland agriculture into wet, climate‐friendly agriculture (paludiculture). Our study focuses on yield maximization of Sphagnum as a crop. We tested the effects of three water level regimes and of phosphorus or potassium fertilization on the growth of four Sphagnum species (S. papillosum, S. palustre, S. fimbriatum, S. fallax). To simulate field conditions in Central and Western Europe we carried out a glasshouse experiment under nitrogen‐saturated conditions. A constant high water table (remaining at 2 cm below capitulum during growth) led to highest productivity for all tested species. Water table fluctuations between 2 and 9 cm below capitulum during growth and a water level 2 cm below capitulum at the start but falling relatively during plant growth led to significantly lower productivity. Fertilization had no effect on Sphagnum growth under conditions with high atmospheric deposition such as in NW Germany (38 kg N, 0.3 kg P, 7.6 kg K·ha−1·year−1). Large‐scale maximization of Sphagnum yields requires precise water management, with water tables just below the capitula and rising with Sphagnum growth. The nutrient load in large areas of Central and Western Europe from atmospheric deposition and irrigation water is high but, with an optimal water supply, does not hamper Sphagnum growth, at least not of regional provenances of Sphagnum
    corecore