175 research outputs found

    Traveling Wave Fronts and Localized Traveling Wave Convection in Binary Fluid Mixtures

    Full text link
    Nonlinear fronts between spatially extended traveling wave convection (TW) and quiescent fluid and spatially localized traveling waves (LTWs) are investigated in quantitative detail in the bistable regime of binary fluid mixtures heated from below. A finite-difference method is used to solve the full hydrodynamic field equations in a vertical cross section of the layer perpendicular to the convection roll axes. Results are presented for ethanol-water parameters with several strongly negative separation ratios where TW solutions bifurcate subcritically. Fronts and LTWs are compared with each other and similarities and differences are elucidated. Phase propagation out of the quiescent fluid into the convective structure entails a unique selection of the latter while fronts and interfaces where the phase moves into the quiescent state behave differently. Interpretations of various experimental observations are suggested.Comment: 46 pages, 11 figures. Accepted for publication in Phys. Rev.

    Influence of the Dufour effect on convection in binary gas mixtures

    Full text link
    Linear and nonlinear properties of convection in binary fluid layers heated from below are investigated, in particular for gas parameters. A Galerkin approximation for realistic boundary conditions that describes stationary and oscillatory convection in the form of straight parallel rolls is used to determine the influence of the Dufour effect on the bifurcation behaviour of convective flow intensity, vertical heat current, and concentration mixing. The Dufour--induced changes in the bifurcation topology and the existence regimes of stationary and traveling wave convection are elucidated. To check the validity of the Galerkin results we compare with finite--difference numerical simulations of the full hydrodynamical field equations. Furthermore, we report on the scaling behaviour of linear properties of the stationary instability.Comment: 14 pages and 10 figures as uuencoded Postscript file (using uufiles

    Two classes of generalized functions used in nonlocal field theory

    Full text link
    We elucidate the relation between the two ways of formulating causality in nonlocal quantum field theory: using analytic test functions belonging to the space S0S^0 (which is the Fourier transform of the Schwartz space D\mathcal D) and using test functions in the Gelfand-Shilov spaces Sα0S^0_\alpha. We prove that every functional defined on S0S^0 has the same carrier cones as its restrictions to the smaller spaces Sα0S^0_\alpha. As an application of this result, we derive a Paley-Wiener-Schwartz-type theorem for arbitrarily singular generalized functions of tempered growth and obtain the corresponding extension of Vladimirov's algebra of functions holomorphic on a tubular domain.Comment: AMS-LaTeX, 12 pages, no figure

    Influence of the Soret effect on convection of binary fluids

    Full text link
    Convection in horizontal layers of binary fluids heated from below and in particular the influence of the Soret effect on the bifurcation properties of extended stationary and traveling patterns that occur for negative Soret coupling is investigated theoretically. The fixed points corresponding to these two convection structures are determined for realistic boundary conditions with a many mode Galerkin scheme for temperature and concentration and an accurate one mode truncation of the velocity field. This solution procedure yields the stable and unstable solutions for all stationary and traveling patterns so that complete phase diagrams for the different convection types in typical binary liquid mixtures can easily be computed. Also the transition from weakly to strongly nonlinear states can be analyzed in detail. An investigation of the concentration current and of the relevance of its constituents shows the way for a simplification of the mode representation of temperature and concentration field as well as for an analytically manageable few mode description.Comment: 30 pages, 12 figure

    Nonlocal looking equations can make nonlinear quantum dynamics local

    Full text link
    A general method for extending a non-dissipative nonlinear Schr\"odinger and Liouville-von Neumann 1-particle dynamics to an arbitrary number of particles is described. It is shown at a general level that the dynamics so obtained is completely separable, which is the strongest condition one can impose on dynamics of composite systems. It requires that for all initial states (entangled or not) a subsystem not only cannot be influenced by any action undertaken by an observer in a separated system (strong separability), but additionally that the self-consistency condition Tr2ϕ1+2t=ϕ1tTr2Tr_2\circ \phi^t_{1+2}=\phi^t_{1}\circ Tr_2 is fulfilled. It is shown that a correct extension to NN particles involves integro-differential equations which, in spite of their nonlocal appearance, make the theory fully local. As a consequence a much larger class of nonlinearities satisfying the complete separability condition is allowed than has been assumed so far. In particular all nonlinearities of the form F(ψ(x))F(|\psi(x)|) are acceptable. This shows that the locality condition does not single out logarithmic or 1-homeogeneous nonlinearities.Comment: revtex, final version, accepted in Phys.Rev.A (June 1998

    Influence of through-flow on linear pattern formation properties in binary mixture convection

    Full text link
    We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic top and bottom boundary conditions. Through-flow induced changes of the bifurcation thresholds (stability boundaries) for different types of convective solutions are deter- mined in the control parameter space spanned by Rayleigh number, Soret coupling (positive as well as negative), and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we determine with a saddle point analysis of the complex dispersion relation of the field equations over the complex wave number plane the borders between absolute and convective instabilities for different types of perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation. PACS:47.20.-k,47.20.Bp, 47.15.-x,47.54.+rComment: 19 pages, 15 Postscript figure

    Convection in Binary Fluid Mixtures. II. Localized Traveling Waves. (Physical Review E, in press)

    Full text link
    Nonlinear, spatially localized structures of traveling convection rolls are investigated in quantitative detail as a function of Rayleigh number for two different Soret coupling strengths (separation ratios) with Lewis and Prandtl numbers characterizing ethanol-water mixtures. A finite-difference method was used to solve the full hydrodynamic field equations numerically. Structure and dynamics of these localized traveling waves (LTW) are dominated by the concentration field. Like in the spatially extended convective states ( cf. accompanying paper), the Soret-induced concentration variations strongly influence, via density changes, the buoyancy forces that drive convection. The spatio-temporal properties of this feed-back mechanism, involving boundary layers and concentration plumes, show that LTW's are strongly nonlinear states. Light intensity distributions are determined that can be observed in side-view shadowgraphs. Detailed analyses of all fields are made using colour-coded isoplots, among others. In the frame comoving with their drift velocity, LTW's display a nontrivial spatio-temporal symmetry consisting of time-translation by half an oscillation period combined with vertical reflection through the horizontal midplane of the layer. A time-averaged concentration current is driven by a phase difference between the waves of concentration and vertical velocity in the bulk of the LTW state. The associated large-scale concentration redistribution stabilizes the LTW and controls its drift velocity into the quiescent fluid by generating a buoyancy-reducing concentration "barrier" ahead of the leading LTW front. The selection of the width of the LTW's is investigated and comparisons with experiments are presented.Comment: 18 pages and 6 figures as uuencoded Postscript file (using uufiles) 1 color figure as uuencoded Postscript file, a high resolution version of the color figure (about 10MB) can be requested from [email protected] or [email protected].: (Barten)present address: PSI, CH-5232 Villigen PSI, Switzerlan

    A Structured Model of Video Reproduces Primary Visual Cortical Organisation

    Get PDF
    The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition
    corecore