245 research outputs found

    Mean-field scaling function of the universality class of absorbing phase transitions with a conserved field

    Full text link
    We consider two mean-field like models which belong to the universality class of absorbing phase transitions with a conserved field. In both cases we derive analytically the order parameter as function of the control parameter and of an external field conjugated to the order parameter. This allows us to calculate the universal scaling function of the mean-field behavior. The obtained universal function is in perfect agreement with recently obtained numerical data of the corresponding five and six dimensional models, showing that four is the upper critical dimension of this particular universality class.Comment: 8 pages, 2 figures, accepted for publication in J. Phys.

    Absorbing phase transition in a conserved lattice gas with random neighbor particle hopping

    Full text link
    A conserved lattice gas with random neighbor hopping of active particles is introduced which exhibits a continuous phase transition from an active state to an absorbing non-active state. Since the randomness of the particle hopping breaks long range spatial correlations our model mimics the mean-field scaling behavior of the recently introduced new universality class of absorbing phase transitions with a conserved field. The critical exponent of the order parameter is derived within a simple approximation. The results are compared with those of simulations and field theoretical approaches.Comment: 5 pages, 3 figures, accepted for publication in J. Phys.

    Tricritical directed percolation

    Full text link
    We consider a modification of the contact process incorporating higher-order reaction terms. The original contact process exhibits a non-equilibrium phase transition belonging to the universality class of directed percolation. The incorporated higher-order reaction terms lead to a non-trivial phase diagram. In particular, a line of continuous phase transitions is separated by a tricritical point from a line of discontinuous phase transitions. The corresponding tricritical scaling behavior is analyzed in detail, i.e., we determine the critical exponents, various universal scaling functions as well as universal amplitude combinations

    Crossover phenomenon in self-organized critical sandpile models

    Full text link
    We consider a stochastic sandpile where the sand-grains of unstable sites are randomly distributed to the nearest neighbors. Increasing the value of the threshold condition the stochastic character of the distribution is lost and a crossover to the scaling behavior of a different sandpile model takes place where the sand-grains are equally transferred to the nearest neighbors. The crossover behavior is numerically analyzed in detail, especially we consider the exponents which determine the scaling behavior.Comment: 6 pages, 9 figures, accepted for publication in Physical Review

    Finite-size scaling of directed percolation above the upper critical dimension

    Full text link
    We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the non-equilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of associated path integrals we derive modified finite-size scaling forms of the order parameter and its higher moments. The results are confirmed by numerical simulations of corresponding high-dimensional lattice models.Comment: 4 pages, one figur

    Moment analysis of the probability distributions of different sandpile models

    Full text link
    We reconsider the moment analysis of the Bak-Tang-Wiesenfeld and the Manna sandpile model in two and three dimensions. In contrast to recently performed investigations our analysis turns out that the models are characterized by different scaling behavior, i.e., they belong to different universality classes.Comment: 6 pages, 6 figures, accepted for publication in Physical Review

    Eight steps to facilitating more equitable education in undergraduate sciences

    Get PDF
    Pedagogical practices can influence students’ confidence and ability beliefs and affect their ambition to persevere in science. Given the continuing need to diversify science and retain students in scientific programmes, science education must be tailored to cater to the needs of varied student groups. Since early experience in university programmes can be decisive in determining students’ further academic and professional choices, pedagogies employed in undergraduate science courses can be particularly influential in supporting science careers. Undergraduate science instructors are therefore encouraged to consider their approaches to teaching and learning from a variety of perspectives that could help empower students from under-represented groups

    The Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension

    Full text link
    We consider the Bak-Tang-Wiesenfeld sandpile model on square lattices in different dimensions (D>=6). A finite size scaling analysis of the avalanche probability distributions yields the values of the distribution exponents, the dynamical exponent, and the dimension of the avalanches. Above the upper critical dimension D_u=4 the exponents equal the known mean field values. An analysis of the area probability distributions indicates that the avalanches are fractal above the critical dimension.Comment: 7 pages, including 9 figures, accepted for publication in Physical Review

    Critical behavior of a traffic flow model

    Full text link
    The Nagel-Schreckenberg traffic flow model shows a transition from a free flow regime to a jammed regime for increasing car density. The measurement of the dynamical structure factor offers the chance to observe the evolution of jams without the necessity to define a car to be jammed or not. Above the jamming transition the dynamical structure factor exhibits for a given k-value two maxima corresponding to the separation of the system into the free flow phase and jammed phase. We obtain from a finite-size scaling analysis of the smallest jam mode that approaching the transition long range correlations of the jams occur.Comment: 5 pages, 7 figures, accepted for publication in Physical Review

    Logarithmic corrections of the avalanche distributions of sandpile models at the upper critical dimension

    Full text link
    We study numerically the dynamical properties of the BTW model on a square lattice for various dimensions. The aim of this investigation is to determine the value of the upper critical dimension where the avalanche distributions are characterized by the mean-field exponents. Our results are consistent with the assumption that the scaling behavior of the four-dimensional BTW model is characterized by the mean-field exponents with additional logarithmic corrections. We benefit in our analysis from the exact solution of the directed BTW model at the upper critical dimension which allows to derive how logarithmic corrections affect the scaling behavior at the upper critical dimension. Similar logarithmic corrections forms fit the numerical data for the four-dimensional BTW model, strongly suggesting that the value of the upper critical dimension is four.Comment: 8 pages, including 9 figures, accepted for publication in Phys. Rev.
    corecore