4 research outputs found

    Sedimentologic and structural research at the hinge between the High and the Middle Atlas Mountains, and the High Moulouya, Morocco

    No full text
    The northeast border of the central Atlas Mountains lies at the hinge between three structural units: the High Atlas, the Middle Atlas and the inter-mountainous plateau of the High Moulouya. Situated along the northwest border of the African continental plate, the region’s sedimentological and geodynamic evolution was strongly influenced by both the Mediterranean (or Tethysian) mobile zone to the east and the Atlantic Ocean to the west. The other major factor influencing the area's evolution during the Mesozoic and Cenozoic eras was the intersection of the adjoining African and Iberian tectonic plates. Due to the dislocation and break-up of the supercontinent Pangaea and the resulting reactivation of the older Hercynian tectonic structures, a typical intracontinental rift system developed during the Upper Triassic period. From the Lower Jurassic to the Eocene, a remarkable diversity of facies zones developed in the depositional areas, ranging from deep platform environments to continental settings. The relatively rigid overlying strata were fractured and faulted during the initiation of the main compressive phase in the Upper Cretaceous period under the influence of the predetermined underlying faulting structure. Therefore, normal faults and thrust faults with a certain lateral extension were established over the resulting hydrogenetic and highly ductile Triassic sediments. Because of the complexity regarding the tectonic relations between the three structural units, there is a high level of interest in their junction zone, located in the research area. Therefore, the study area is divided into two different regions: the Ouaouizarth region in the southwest border of the contact zone of the High and Middle Atlas, and the Aghbala region to the northeast (the latter comprising the High Moulouya plateau and the convergence of the Atlas ranges). One of the main focuses of the present work is the establishment of a Geographic Information System (GIS) for the northern border of the High Atlas system. In order to insure subsequent use of the system, a high level of exchangeability has been implemented. As of now, there is no similar system for the entire Atlas mountain range, despite a clear and present need. Such an “AtlasGIS“ system would prove indispensable not only in the fields of ground water provisioning and natural hazard management, but in the implementing sustainable tourism model (in the framework of the UNESCO geopark concept) as well. With regard to contents, data resulting from new geological investigations conducted during this project was integrated with previously existing and readily available data (primarily geological maps, aerial photographs and satellite images). As a direct result of the AtlasGIS project, two new geological maps of the investigation area have been generated. The sedimentological and structural results of the present work fit well within the paleogeographical context of the bordering regions of the western Tethys. In particular, answers to the following questions have been outlined: ‱ Timeframe and character of the differentiation of the High and Middle Atlas and the High Moulouya; ‱ Dating of the Jurassic and Cretaceous Redbeds, formerly considered as free of fossils; ‱ Influence of the deformation on the classification of the Jurassic and Cretaceous Redbed sediments; ‱ Relationships between the post-Triassic sedimentary cover and the hercynian basement; ‱ Chronological setting of the development of the deformation structures; ‱ Sedimentary, paleogeographical and structural relation between the Middle and the High Atlas; Detailed lithological investigations of the geological history of the Atlas system have focused on the redbed sediments from the Dogger, Malm and the Lower Cretaceous. During these periods, important changes in environmental conditions have been noted and the first compressional structures had been detected. A geodynamic model consisting of five evolutionary phases has been developed. Furthermore, a change of polarity of the sedimentary accumulation area has been identified: although previously controlled only by the Tethys, during the Lower Cretaceous (Barremian) period the area also came under the influence of the Atlantic Ocean. Though the Turonian period, occurrences of both oceans are clearly visible. The Middle Atlas could be regarded as an estuary of the High Atlas, which shares similar sedimentary and structural developments. They do not, however, reflect the evolution of two separated basins, despite local compressions during the Dogger. The differentiation of the two mountain chains did not occur earlier than during the first compressive main phase at the uppermost Cretaceous, most likely during Tertiary.La bordure nord-est du systĂšme atlasique assure l’articulation entre trois unitĂ©s structurales diffĂ©rentes : le Haut Atlas au sud, le Moyen Atlas au nord ouest et la Haute Moulouya, plateau intra-montagneux au nord est. L’évolution sĂ©dimentologique et gĂ©odynamique de cette rĂ©gion a Ă©tĂ© influencĂ©e Ă  la fois par les deux ocĂ©ans voisins, la TĂ©thys Ă  l’est et la marge atlantique Ă  l’ouest, et par les deux plaques continentales adjacentes, la plaque africaine au sud et l’IbĂ©rie au nord. A la suite de la dislocation du supercontinent PangĂ©e, les structures tectoniques hercyniennes ont Ă©tĂ© rĂ©activĂ©es en transtension et un bassin de type rift intracontinental typique s’est crĂ©Ă© Ă  partir du Trias infĂ©rieur. Entre le Jurassique infĂ©rieur et l’EocĂšne, pĂ©riodes de sĂ©dimentation rĂ©sultantes ont Ă©tĂ© enregistrĂ©es des variations notables de faciĂšs et de milieux de dĂ©pĂŽt, allant d’un environnement de plate-forme plus ou moins profonde jusqu’au domaine continental Ă©mergĂ©. Avec le dĂ©but de la phase compressive du CrĂ©tacĂ© supĂ©rieur, la couverture relativement souple a Ă©tĂ© faillĂ©e et plissĂ©e sous l’influence du dispositif structural hercynien hĂ©ritĂ©, un socle plus rigide. De grands accidents profonds et des chevauchements latĂ©raux en sont le rĂ©sultat, entraĂźnant le dĂ©collement de la couverture post-hercynienne sur les sĂ©ries du Trias, souvent Ă©vaporitiques et plastiques. En raison des relations tectoniques complexes entre les trois unitĂ©s atlasiques concernĂ©es, une attention particuliĂšre Ă  Ă©tĂ© portĂ©e Ă  leur zone d’articulation. Le terrain d’étude est ainsi reparti en deux rĂ©gions distinctes : la rĂ©gion de Ouaouizarth Ă  la limite sud-ouest de la zone de contact entre Haut et Moyen Atlas, et la rĂ©gion d’Aghbala en position nord orientale. Cette derniĂšre implique Ă©galement la Haute Moulouya, qui assure ici la jonction entre le Haut et le Moyen Atlas. Le corps de l’ouvrage est tout d’abord consacrĂ© Ă  la rĂ©alisation d’un SystĂšme d’Information GĂ©ographique (SIG) sur le domaine du Haut Atlas central. Ce systĂšme est construit en gardant une grande possibilitĂ© de modifications et d’adaptations afin d’assurer des utilisations et perfectionnements ultĂ©rieurs. Jusqu’à prĂ©sent, un tel systĂšme Ă©tait inexistant, en dĂ©pit d’un besoin trĂšs rĂ©el, notamment en matiĂšre de gestion des ressources en eau, de la prĂ©vention des risques naturels, ou du tourisme. Pour ce dernier, un « Atlas SIG » est indispensable. La base de donnĂ©es contient les rĂ©sultats de la recherche ici prĂ©sentĂ©s, mais aussi les donnĂ©es dĂ©jĂ  existantes et disponibles, surtout celles qui sont consignĂ©es dans les anciennes cartes gĂ©ologiques. Dans le cadre de « l’Atlas SIG », deux cartes ont Ă©tĂ© gĂ©nĂ©rĂ©es (feuille de Ouaouizarth et feuille d’Aghbala). Concernant la recherche fondamentale, les rĂ©sultats obtenus s’intĂšgrent bien Ă  l’échelle atlasique, tant dans les cadres stratigraphique, sĂ©dimentologique, palĂ©ogĂ©ographique que gĂ©odynamique, dĂ©jĂ  connus pour la marge ouest de la TĂ©thys. Les questions essentielles suivantes ont Ă©tĂ© traitĂ©es: ‱ datation des « couches rouges » auparavant considĂ©rĂ©es comme azoĂŻques. ‱ style de dĂ©formation en fonction de l’organisation de la sĂ©dimentation des couches rouges du CrĂ©tacĂ© ; ‱ relations entre couverture post-triasique dĂ©collĂ©e et socle hercynien ; ‱ premiĂšre Ă©tape de dĂ©formation compressive ; ‱ importance et fonctionnement des chevauchements nord-atlasiques frontaux; ‱ relations sĂ©dimentaires, palĂ©ogĂ©ographiques et structurales entre Haut Atlas, Moyen Atlas et Haute Moulouya; L’étude dĂ©taillĂ©e des formations lithologiques s’appuie sur les couches rouges du Dogger, du Malm et du CrĂ©tacĂ© infĂ©rieur. C’est ici que les changements importants de l’évolution gĂ©odynamique rĂ©gionale se sont enregistrĂ©s, comprenant aussi les premiĂšres phases compressives locales. Les analyses sĂ©dimentologiques conduisent Ă  proposer un schĂ©ma d’évolution gĂ©odynamique, qui comporte cinq stades. C’est d’abord le changement de la polaritĂ© des aires de dĂ©pĂŽt Ă  partir du CrĂ©tacĂ© infĂ©rieur (BarrĂ©mien) : la sĂ©dimentation, auparavant influencĂ©e par la TĂ©thys, est dĂ©sormais soumise Ă  l’influence du rift atlantique juvĂ©nile. A partir du Turonien, on remarque une influence mixte de deux ocĂ©ans sur la bordure nord du systĂšme atlasique. Le Moyen Atlas peut ĂȘtre considĂ©rĂ© comme « branche » du Haut Atlas, qui a plus ou moins subi les mĂȘmes Ă©volutions sĂ©dimentaire et structurale, de sorte qu’on ne peut pas parler de deux bassins atlasiques distincts. MalgrĂ© des compressions locales durant le Dogger, la diffĂ©rentiation du Haut et du Moyen Atlas est tardive et ne se fait pas avant la phase compressive majeure, Ă  partir du CrĂ©tacĂ© sommital, mais plus vraisemblablement au cours du Tertiaire

    Risikomanagement: Wildfeuer im Nordwesten Tunesiens Risk Management: Wildfires in the Northwest of Tunisia

    No full text
    The issue of wildfi res is being considered with a focus on northwest of Tunisia in the context of an extensive literature research. Various statistics on the problem are analyzed and possible trends are identifi ed. On the basis of the knowledge gained, a risk analysis will be carried out, including vulnerability and hazard analysis. The vulnerability analysis is carried out using the Multi Criteria Evaluation (MCE) with Analytic Hierarchy Process (AHP). The concept of fuzzy quantities is extended in order to cover the whole risk analysis. For the area of investigation, a spatial distribution of the risk caused by wild fires is calculated and the impact of diff erent membership functions on criteria (interpreted as fuzzy quantities) is presented

    Field data and the gas hydrate markup language

    No full text
    Data and information exchange are crucial for any kind of scientific research activities and are becoming more and more important. The comparison between different data sets and different disciplines creates new data, adds value, and finally accumulates knowledge. Also the distribution and accessibility of research results is an important factor for international work. The gas hydrate research community is dispersed across the globe and therefore, a common technical communication language or format is strongly demanded. The CODATA Gas Hydrate Data Task Group is creating the Gas Hydrate Markup Language (GHML), a standard based on the Extensible Markup Language (XML) to enable the transport, modeling, and storage of all manner of objects related to gas hydrate research. GHML initially offers an easily deducible content because of the text-based encoding of information, which does not use binary data. The result of these investigations is a custom-designed application schema, which describes the features, elements, and their properties, defining all aspects of Gas Hydrates. One of the components of GHML is the "Field Data" module, which is used for all data and information coming from the field. It considers international standards, particularly the standards defined by the W3C (World Wide Web Consortium) and the OGC (Open Geospatial Consortium). Various related standards were analyzed and compared with our requirements (in particular the Geographic Markup Language (ISO19136, GML) and the whole ISO19000 series). However, the requirements demanded a quick solution and an XML application schema readable for any scientist without a background in information technology. Therefore, ideas, concepts and definitions have been used to build up the modules of GHML without importing any of these Markup languages. This enables a comprehensive schema and simple use
    corecore