170 research outputs found
Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer
Polydimethylsiloxane is a silicone rubber. It has a unique flexibility, resulting in one of the lowest glass-transition temperatures of any polymer. Furthermore, it shows a low elasticity change versus temperature, a high thermal stability, chemical inertness, dielectric stability, shear stability and high compressibility. Because of its high flexibility and the very low drift of its properties with time and temperature, polydimethylsiloxane could be well suited for mechanical sensors, such as accelerometers. A novel capacitive accelerometer with polydimethylsiloxane layers as springs has been realized. The obtained measurement results are promising and show a good correspondence with the theoretical values
On the design of a triaxial accelerometer
Up to now, mainly uniaxial accelerometers are described in most publications concerning this subject. However, triaxial accelerometers are needed in the biomedical field. Commercially available triaxial accelerometers consisting of three orthogonally positioned uniaxial devices do not meet all specifications of the biomedical application. Therefore, a new highly symmetrical inherently triaxial accelerometer is being developed, the advantages of which are higher sensitivity and reduction of off-axis sensitivity
Micro Coriolis Mass Flow Sensor with Piezoelectric Transducers for Both Actuation and Readout
We have realized a micro Coriolis mass flow sensor with piezoelectric transducers for both actuation and readout, resulting in lower power consumption and improved robustness to shock in comparison to the current actuation and readout methods. The PZT thin film in the parallel plate piezoelectric transducers was deposited by pulsed laser deposition (PLD). This paper presents the design, fabrication process and initial characterization results with mass flow of water and nitrogen.</p
Integrated pressure sensing using capacitive Coriolis mass flow sensors
The cross-sectional shape of microchannels is, dependent on the fabrication method, never perfectly circular. Consequently, the channels deform with the pressure, which is a non-ideal effect in flow sensors, but may be used for pressure sensing. Multiple suspended channels with different lengths were modeled, fabricated, and characterized to verify the use and the scalability of this effect for pressure sensing. Furthermore, it is shown that the pressure dependence can be distinguished from the Coriolis effect in microfabricated Coriolis mass flow sensors, enabling the measurement of the pressure next to flow and density with only the flow sensor itself. In addition, this allows for further improvement in the accuracy of the flow measurement by correcting for the small pressure dependence
Theory, technology and assembly of a highly symmetrical capacitive triaxial accelerometer
A highly symmetrical cubic easy-to-assemble capacitive triaxial accelerometer for biomedical applications has been designed, realized and tested. The outer dimensions of the sensor are 5×5×5 mm 3 and the device is mounted on a standard IC package. New aspects of the sensor are an easy assembly procedure, the use of the polymers polydimethylsiloxane (PDMS) as spring material between the capacitor plates and the mass and polyimide (PI) as flexible interconnection layer between the capacitor plates, and the highly symmetrical cubic structure. The mathematical model, technology and assembly procedure of the sensor are described. The measurement results show a good linearity in the output voltage for accelerations up to at least 5 g and a bandwidth of DC >50 Hz. In the x-axis the sensitivity was found to be 175 mV/g which is in good correspondence with the theory. The sensitivity can be increased when the PDMS layer is patterned, which was shown in previous versions of the highly symmetrical triaxial acceleromete
Polydimethylsiloxane, a photocurable rubberelastic polymer used as spring material in micromechanical sensors
Polydimethylsiloxane (PDMS) is a commercially available physically and chemically stable photocurable silicone rubber which has a unique flexibility (G≈250 kPa) at room temperature. Further properties of PDMS are a low elasticity change versus temperature (1.1 kPa/°C), no elasticity change versus frequency and a high compressibility. PDMS is an interesting polymer to be used as spring material in micromechanical sensors such as accelerometers. The spring constant of the PDMS structures was theoretically calculated and measurements were done on accelerometers with PDMS springs to validate the theory. The measured and calculated spring constants showed a good correspondence, so the measurement results showed that the PDMS structures can successfully be used as mechanical springs
Air Damping Analysis of a Micro-Coriolis Mass Flow Sensor
A micro-Coriolis mass flow sensor is a resonating device that measures small mass flows of fluid. A large vibration amplitude is desired as the Coriolis forces due to mass flow and, accordingly, the signal-to-noise ratio, are directly proportional to the vibration amplitude. Therefore, it is important to maximize the quality factor Q so that a large vibration amplitude can be achieved without requiring high actuation voltages and high power consumption. This paper presents an investigation of the Q factor of different devices in different resonant modes. Q factors were measured both at atmospheric pressure and in vacuum. The measurement results are compared with theoretical predictions. In the atmospheric environment, the Q factor increases when the resonance frequency increases. When reducing the pressure from 1 bar to 0.1 bar, the Q factor almost doubles. At even lower pressures, the Q factor is inversely proportional to the pressure until intrinsic effects start to dominate, resulting in a maximum Q factor of approximately 7200.</p
Portable and integrated microfluidic flow control system using off-the-shelf components towards organs-on-chip applications
Organ-on-a-chip (OoC) devices require the precise control of various media. This is mostly done using several fluid control components, which are much larger than the typical OoC device and connected through fluidic tubing, i.e., the fluidic system is not integrated, which inhibits the system’s portability. Here, we explore the limits of fluidic system integration using off-the-shelf fluidic control components. A flow control configuration is proposed that uses a vacuum to generate a fluctuation-free flow and minimizes the number of components used in the system. 3D printing is used to fabricate a custom-designed platform box for mounting the chosen smallest footprint components. It provides flexibility in arranging the various components to create experiment-specific systems. A demonstrator system is realized for lung-on-a-chip experiments. The 3D-printed platform box is 290 mm long, 240 mm wide and 37 mm tall. After integrating all the components, it weighs 4.8 kg. The system comprises of a switch valve, flow and pressure controllers, and a vacuum pump to control the diverse media flows. The system generates liquid flow rates ranging from 1.5 μ Lmin - 1 to 68 μ Lmin - 1 in the cell chambers, and a cyclic vacuum of 280 mbar below atmospheric pressure with 0.5 Hz frequency in the side channels to induce mechanical strain on the cells-substrate. The components are modular for easy exchange. The battery operated platform box can be mounted on either upright or inverted microscopes and fits in a standard incubator. Overall, it is shown that a compact integrated and portable fluidic system for OoC experiments can be constructed using off-the-shelf components. For further down-scaling, the fluidic control components, like the pump, switch valves, and flow controllers, require significant miniaturization while having a wide flow rate range with high resolution.</p
Modeling, Fabrication, and Testing of a 3D-Printed Coriolis Mass Flow Sensor
This paper presents the modeling, fabrication, and testing of a 3D-printed Coriolis mass flow sensor. The sensor contains a free-standing tube with a circular cross-section printed using the LCD 3D-printing technique. The tube has a total length of 42 mm, an inner diameter of about 900 µm, and a wall thickness of approximately 230 µm. The outer surface of the tube is metalized using a Cu plating process, resulting in a low electrical resistance of 0.5 Ω. The tube is brought into vibration using an AC current in combination with a magnetic field from a permanent magnet. The displacement of the tube is detected using a laser Doppler vibrometer (LDV) that is part of a Polytec MSA-600 microsystem analyzer. The Coriolis mass flow sensor has been tested over a flow range of 0–150 g/h for water, 0–38 g/h for isopropyl alcohol (IPA), and 0–50 g/h for nitrogen. The maximum flow rates of water and IPA resulted in less than a 30 mbar pressure drop. The pressure drop at the maximum flow rate of nitrogen is 250 mbar.</p
- …