9 research outputs found

    Two stage Innoslab amplifier for energy scaling from 100 to >500  mJ for future lidar applications

    No full text
    An Nd:YAG-MOPA system consisting of a stable oscillator and two subsequent Innoslab-based amplifier stages has been designed and built as a technology demonstrator for future lidar applications. Overall, the authors demonstrate that it generates more than 500 mJ of pulse energy at a 1064 nm wavelength and 100 Hz pulse repetition frequency at about 30 ns pulse duration in the single longitudinal mode. Seeded with 75 mJ pulses, the second amplifier stage achieved an optical efficiency (extracted energy to pump energy) of more than 23% while preserving excellent beam quality. To address the 500 mJ regime while retaining the basic system properties, an established Innoslab design was scaled geometrically

    Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN

    No full text
    In the field of atmospheric research, LIDAR is a powerful technology that can measure gas or aerosol concentrations, wind speed or temperature profiles remotely. To conduct such measurements globally, spaceborne systems are advantageous. Pulse energies in the 100 mJ range are required to achieve highly accurate, longitudinal resolved measurements. Measuring concentrations of specific gases, such as CH4 or CO2, requires output wavelengths in the IRB, which can be addressed by optical parametric frequency conversion. An OPO/OPA frequency conversion setup was designed and built as a demonstration module to address the 1.6 ÎĽm range. The pump laser is an Nd:YAG-MOPA system, consisting of a stable oscillator and two subsequent Innoslab-based amplifier stages that deliver up to 500 mJ of output pulse energy at 100 Hz repetition frequency. The OPO is inherited from the OPO design for the CH4 lidar instrument on the French-German climate satellite MERLIN. In order to address the 100 mJ regime, the OPO output beam is amplified in a subsequent multistage OPA. With KTP as nonlinear medium, the OPO/OPA delivered more than 100 mJ of output energy at 1645 nm from 450 mJ of the pump energy and a pump pulse duration of 30 ns. This corresponds to a quantum conversion efficiency of about 25 %. Besides demonstrating optical performance for future lidar systems, this laser will be part of a LIDT test facility, which will be used to qualify optical components especially for the MERLIN mission

    Feasibility and performance study for a space-borne 1645nm OPO for French-German satellite mission MERLIN

    No full text
    We present a theoretical and experimental analysis of a pulsed 1645 nm optical parametric oscillator (OPO) conducted to prove the feasibility of such a device for a spaceborne laser transmitter in an integrated path differential absorption (IPDA) lidar system. The investigation is part of the French-German satellite mission MERLIN (Methane Remote Sensing Lidar Mission). As an effective greenhouse gas, methane plays an important role for the global climate. The architecture of the OPO is based on a conceptual design developed by DLR, consisting of two KTA crystals in a four-mirror-cavity. One of the cavity mirrors is piezo-driven to provide single frequency operation of the OPO. Using numerical simulations, we studied the performance and alignment tolerances of such a setup with KTP and KTA and investigated means to optimize the optical design by increasing the efficiency and decreasing the fluence on the optical components. For the experimental testing of the OPO, we used the INNOSlab-based ESA pre-development model ATLAS as pump laser at 1064 nm. At a pulse frequency of 25 Hz this MOPA delivers a pump energy up to 45 mJ with a beam quality factor of about M² = 1.3. With KTP as nonlinear crystal the OPO obtained 9.2 mJ pulse energy at 1645 nm from 31.5 mJ of the pump and a pump pulse duration of 42 ns. This corresponds to an optical/optical efficiency of 29%. After the pump pulse was reduced to 24 ns a similar OPO performance could be obtained by adapting the pump beam radius
    corecore