2 research outputs found

    Use of near-infrared spectroscopy on predicting wastewater constituents to facilitate the operation of a membrane bioreactor

    No full text
    The use of near-infrared (NIR) spectroscopy in wastewater treatment has continuously expanded. As an alternative to conventional analytical methods for monitoring constituents in wastewater treatment processes, the use of NIR spectroscopy is considered to be cost-effective and less time-consuming. NIR spectroscopy does not distort the measured sample in any way as no prior treatment is required, making it a waste-free technique. On the negative side, one has to be very well versed with chemometric techniques to interpret the results. In this study, filtered and centrifuged wastewater and sludge samples from a lab-scale membrane bioreactor (MBR) were analysed. Two analytical methods (conventional and NIR spectroscopy) were used to determine and compare major wastewater constituents. Particular attention was paid to soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) known to promote membrane fouling. The parameters measured by NIR spectroscopy were analysed and processed with partial least squares regression (PLSR) and artificial neural networks (ANN) models to assess whether the evaluated wastewater constituents can be monitored by NIR spectroscopy. Very good results were obtained with PLSR models, except for the determination of SMP, making the model qualitative rather than quantitative for their monitoring. ANN showed better performance in terms of correlation of NIR spectra with all measured parameters, resulting in correlation coefficients higher than 0.97 for training, testing, and validation in most cases. Based on the results of this research, the combination of NIR spectra and chemometric modelling offers advantages over conventional analytical methods.BN/Cees Dekker LabBT/Environmental Biotechnolog

    Putative metabolism of Ca. Accumulibacter via the utilization of glucose

    No full text
    Ca. Accumulibacter was the predominant microorganism (relative FISH bio-abundance of 67 卤 5%) in a lab-scale sequential batch reactor that accomplished enhanced biological phosphorus removal (EBPR) while using glucose and acetate as the carbon sources (1:1 COD-based ratio). Both organic compounds were completely anaerobically consumed. The reactor's performance in terms of P/C ratio, phosphorous release and uptake, and overall kinetic and stoichiometric parameters were on the high end of the reported spectrum for EBPR systems (100:9.3 net mg phosphate removal per mg COD consumed when using glucose and acetate in a 1:1 ratio). The batch tests showed that, to the best of our knowledge, this is the first time a reactor enriched with Ca. Accumulibacter can putatively utilize glucose as the sole carbon source to biologically remove phosphate (COD:P (mg/mg) removal ratio of 100:6.3 when using only glucose). Thus, this research proposes that Ca. Accumulibacter directly anaerobically stored the fed glucose primarily as glycogen by utilizing the ATP provided via the hydrolysis of poly-P and secondarily as PHA by balancing its ATP utilization (glycogen generation) and formation (PHA storage). Alternative hypotheses are also discussed. The reported findings could challenge the conventional theories of glucose assimilation by Ca. Accumulibacter, and can be of significance for the biological removal of phosphorus from wastewaters with high contents of fermentable compounds or low VFAs.BT/Environmental Biotechnolog
    corecore