24 research outputs found
Mg/Ca profiles within archaeological mollusc (Patella vulgata) shells: Laser-Induced Breakdown Spectroscopy compared to Inductively Coupled Plasma-Optical Emission Spectrometry
© 2018 Elsevier B.V. Biogenic carbonate mollusc shells have the unique property of being a durable material found in many archaeological and geological sites, recording in their shell chemical composition the ambient environmental conditions during the mollusc's lifespan. In particular, mollusc shell Mg/Ca ratios have been suggested to be related to seawater temperature, although such a relationship is controversial and appears to be species- and even location-specific. This study investigates the use of Laser-Induced Breakdown Spectroscopy (LIBS) for the rapid measurement of Mg/Ca profiles within Patella vulgata shells, via comparison with one established analytical technique that is most often used for this purpose, ICP-OES. LIBS offers some advantages over other spectrometric techniques, including ICP-OES, the latter requiring initial micromilling of sample powders. LIBS offers faster measurement, reduced sample preparation, easier automation and less complex and lower cost instrumentation. A high correlation is evident between LIBS and ICP-OES Mg/Ca profiles within four archaeological P. vulgata shells, as well as strong similarities between LIBS measurements made in two different areas of each P. vulgata shell (i.e. the apex and a more conventional transect along the axis of shell growth). Validation of the LIBS technique for determination of Mg/Ca profiles within P. vulgata shells has implications for archaeological studies, because a greater number of shell specimens sampled from each archaeological site and chronological level can be measured, thereby improving the statistical robustness of data interpretation and conclusions. One example archaeological application that would benefit from application of the LIBS technique is identification of the season-of-capture of marine molluscs as a food resource for prehistoric societies
Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective
Palaeoecological evidence indicates that highland pines were dominant in extensive areas of the mountains of Central and Northern Iberia during the first half of the Holocene. However, following several millennia of anthropogenic pressure, their natural ranges are now severely reduced. Although pines have been frequently viewed as first-stage successional species responding positively to human disturbance, some recent palaeobotanical work has proposed fire disturbance and human deforestation as the main drivers of this vegetation turnover. To assess the strength of the evidence for this hypothesis and to identify other possible explanations for this scenario, we review the available information on past vegetation change in the mountains of northern inland Iberia. We have chosen data from several sites that offer good chronological control, including palynological records with microscopic charcoal data and sites with plant macro- and megafossil occurrence. We conclude that although the available long-term data are still fragmentary and that new methods are needed for a better understanding of the ecological history of Iberia, fire events and human activities (probably modulated by climate) have triggered the pine demise at different locations and different temporal scales. In addition, all palaeoxylological, palynological and charcoal results obtained so far are fully compatible with a rapid human-induced ecological change that could have caused a range contraction of highland pines in western Iberia
Roadmap on optical sensors
202307 bckwAccepted ManuscriptOthersSpanish CICYT; European FEDER fundsPublishe