14 research outputs found
Whole-genome characterisation of Escherichia coli isolates from patients with bacteraemia presenting with sepsis or septic shock in Spain: a multicentre cross-sectional study
Background: Escherichia coli is the most frequent cause of bloodstream infections (BSIs). About one-third of patients with BSIs due to E coli develop sepsis or shock. The objective of this study is to characterise the microbiological features of E coli blood isolates causing sepsis or septic shock to provide exploratory information for future diagnostic, preventive, or therapeutic interventions. Methods: E coli blood isolates from a multicentre cross-sectional study of patients older than 14 years presenting with sepsis or septic shock (according to the Third International Consensus Definitions for Sepsis and Septic Shock criteria) from hospitals in Spain between Oct 4, 2016, and Oct 15, 2017, were studied by whole-genome sequencing. Phylogroups, sequence types (STs), serotype, FimH types, antimicrobial resistance (AMR) genes, pathogenicity islands, and virulence factors were identified. Susceptibility testing was performed by broth microdilution. The main outcome of this study was the characterisation of the E coli blood isolates in terms of population structure by phylogroups, groups (group 1: phylogroups B2, F, and G; group 2: A, B1, and C; group 3: D), and STs and distribution by geographical location and bloodstream infection source. Other outcomes were virulence score and prevalence of virulence-associated genes, pathogenicity islands, AMR, and AMR-associated genes. Frequencies were compared using χ² or Fisher's exact tests, and continuous variables using the Mann-Whitney test, with Bonferroni correction for multiple comparisons. Findings: We analysed 224 isolates: 140 isolates (63%) were included in phylogenetic group 1, 52 (23%) in group 2, and 32 (14%) in group 3. 85 STs were identified, with four comprising 44% (n=98) of the isolates: ST131 (38 [17%]), ST73 (25 [11%]), ST69 (23 [10%]), and ST95 (12 [5%]). No significant differences in phylogroup or ST distribution were found according to geographical areas or source of bloodstream infection, except for ST95, which was more frequent in urinary tract infections than in other sources (11 [9%] of 116 vs 1 [1%] of 108, p=0·0045). Median virulence score was higher in group 1 (median 25·0 [IQR 20·5–29·0) than in group 2 (median 14·5 [9·0–20·0]; p<0·0001) and group 3 (median 21 [16·5–23·0]; p<0·0001); prevalence of several pathogenicity islands was higher in group 1. No significant differences were found between phylogenetic groups in proportions of resistance to antibiotics. ST73 had higher median virulence score (32 [IQR 29–35]) than the other predominant clones (median range 21–28). Some virulence genes and pathogenicity islands were significantly associated with each ST. ST131 isolates had higher prevalence of AMR and a higher proportion of AMR genes, notably blaCTX-M-15 and blaOXA-1. Interpretation: In this exploratory study, the population structure of E coli causing sepsis or shock was similar to previous studies that included all bacteraemic isolates. Virulence genes, pathogenicity islands, and AMR genes were not randomly distributed among phylogroups or STs. These results provide a comprehensive characterisation of invasive E coli isolates causing severe response syndrome. Future studies are required to determine the contribution of these microbiological factors to severe clinical presentation and worse outcomes in patients with E coli bloodstream infection. Funding: Instituto de Salud Carlos III
Multicentre, randomised, open-label, phase IV-III study to evaluate the efficacy of cloxacillin plus fosfomycin versus cloxacillin alone in adult patients with methicillin-susceptible Staphylococcus aureus bacteraemia: Study protocol for the SAFO trial
Introduction Methicillin-susceptible Staphylococcus aureus (MSSA) bacteraemia is a frequent condition, with high mortality rates. There is a growing interest in identifying new therapeutic regimens able to reduce therapeutic failure and mortality observed with the standard of care of beta-lactam monotherapy. In vitro and small-scale studies have found synergy between cloxacillin and fosfomycin against S. aureus. Our aim is to test the hypothesis that cloxacillin plus fosfomycin achieves higher treatment success than cloxacillin alone in patients with MSSA bacteraemia. Methods We will perform a superiority, randomised, open-label, phase IV-III, two-armed parallel group (1:1) clinical trial at 20 Spanish tertiary hospitals. Adults (=18 years) with isolation of MSSA from at least one blood culture =72 hours before inclusion with evidence of infection, will be randomly allocated to receive either cloxacillin 2 g/4-hour intravenous plus fosfomycin 3 g/6-hour intravenous or cloxacillin 2 g/4-hour intravenous alone for 7 days. After the first week, sequential treatment and total duration of antibiotic therapy will be determined according to clinical criteria by the attending physician. Primary endpoints: (1) Treatment success at day 7, a composite endpoint comprising all the following criteria: patient alive, stable or with improved quick-Sequential Organ Failure Assessment score, afebrile and with negative blood cultures for MSSA at day 7. (2) Treatment success at test of cure (TOC) visit: patient alive and no isolation of MSSA in blood culture or at another sterile site from day 8 until TOC (12 weeks after randomisation). We assume a rate of treatment success of 74% in the cloxacillin group. Accepting alpha risk of 0.05 and beta risk of 0.2 in a two-sided test, 183 subjects will be required in each of the control and experimental groups to obtain statistically significant difference of 12% (considered clinically significant). Ethics and dissemination Ethical approval has been obtained from the Ethics Committee of Bellvitge University Hospital (AC069/18) and from the Spanish Medicines and Healthcare Product Regulatory Agency (AEMPS, AC069/18), and is valid for all participating centres under existing Spanish legislation. The results will be presented at international meetings and will be made available to patients and funders. © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ
Evolution of the use of corticosteroids for the treatment of hospitalised COVID-19 patients in Spain between March and November 2020: SEMI-COVID national registry
Objectives: Since the results of the RECOVERY trial, WHO recommendations about the use of corticosteroids (CTs) in COVID-19 have changed. The aim of the study is to analyse the evolutive use of CTs in Spain during the pandemic to assess the potential influence of new recommendations. Material and methods: A retrospective, descriptive, and observational study was conducted on adults hospitalised due to COVID-19 in Spain who were included in the SEMI-COVID- 19 Registry from March to November 2020. Results: CTs were used in 6053 (36.21%) of the included patients. The patients were older (mean (SD)) (69.6 (14.6) vs. 66.0 (16.8) years; p < 0.001), with hypertension (57.0% vs. 47.7%; p < 0.001), obesity (26.4% vs. 19.3%; p < 0.0001), and multimorbidity prevalence (20.6% vs. 16.1%; p < 0.001). These patients had higher values (mean (95% CI)) of C-reactive protein (CRP) (86 (32.7-160) vs. 49.3 (16-109) mg/dL; p < 0.001), ferritin (791 (393-1534) vs. 470 (236- 996) µg/dL; p < 0.001), D dimer (750 (430-1400) vs. 617 (345-1180) µg/dL; p < 0.001), and lower Sp02/Fi02 (266 (91.1) vs. 301 (101); p < 0.001). Since June 2020, there was an increment in the use of CTs (March vs. September; p < 0.001). Overall, 20% did not receive steroids, and 40% received less than 200 mg accumulated prednisone equivalent dose (APED). Severe patients are treated with higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%. Conclusions: Patients with greater comorbidity, severity, and inflammatory markers were those treated with CTs. In severe patients, there is a trend towards the use of higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Study protocol for a randomized clinical trial to assess 7 versus 14-days of treatment for Pseudomonas aeruginosa bloodstream infections (SHORTEN-2 trial)
Background Research priorities in Antimicrobial Stewardship (AMS) have rapidly evolved in the last decade. The need for a more efficient use of antimicrobials have fueled plenty of studies to define the optimal duration for antibiotic treatments, and yet, there still are large areas of uncertainty in common clinical scenarios. Pseudomonas aeruginosa has been pointed as a priority for clinical research, but it has been unattended by most randomized trials tackling the effectiveness of short treatments. The study protocol of the SHORTEN-2 trial is presented as a practical example of new ways to approach common obstacles for clinical research in AMS. Objective To determine whether a 7-day course of antibiotics is superior to 14-day schemes for treating bloodstream infections by P. aeruginosa (BSI-PA). Methods A superiority, open-label, randomized controlled trial will be performed across 30 Spanish hospitals. Adult patients with uncomplicated BSI-PA will be randomized to receive a 7 versus 14-day course of any active antibiotic. The primary endpoint will be the probability for the 7-day group of achieving better outcomes than the control group, assessing altogether clinical effectiveness, severe adverse events, and antibiotic exposure through a DOOR/RADAR analysis. Main secondary endpoints include treatment failure, BSI-PA relapses, and mortality. A superiority design was set for the primary endpoint and non-inferiority for treatment failure, resulting in a sample size of 304 patients. Conclusions SHORTEN-2 trial aligns with some of the priorities for clinical research in AMS. The implementation of several methodological innovations allowed overcoming common obstacles, like feasible sample sizes or measuring the clinical impact and unintended effects