40 research outputs found

    Notch Signaling in the Astroglial Phenotype: Relevance to Glutamatergic Transmission

    Get PDF
    Glutamate (Glu), the major excitatory neurotransmitter, elicits its action through the activation of membrane receptors and transporters expressed in neurons and glial cells. Glial glutamate transporters, EAAT1 and EAAT2, remove this transmitter from the synaptic cleft preventing an excitotoxic insult. The Notch pathway is a signaling system involved in neuro- and gliogenesis. Radial glia (RG) generates neurons, oligodendrocytes, and astrocytes in a spatial and temporal pattern, in which Notch represses neurogenesis, maintaining the self-renewal potential of RG. Astrogenesis depends on several stimuli, Notch being a master regulator of the differentiation process. The cAMP-PKA-CREB signaling cascade cross talks with the Notch pathway, acting synergistically by reducing progenitor markers and inducing astrocytic differentiation. Notch1 mRNA is upregulated in a PKA/γ-secretase/NICD/CSL-dependent manner, suggesting a feedback loop to keep Notch active until astrocytic differentiation is complete. Glial differentiation is also modulated by PKC, which acts over NICD. In RG cells and astrocytes enwrapping glutamatergic synapses, EAAT1 transcriptional regulation is mediated by PKC, increasing Notch expression and its receptor intracellular traffic. It is clear that Notch represents an activity-dependent molecular key in RG cells that enable them to shape glutamatergic transmission through the expression of genes involved in glial/neuronal interactions

    The Genetic and Biochemical Blueprint of Endometrial Receptivity: Past, Present, and Future Factors Involved in Embryo Implantation Success

    Get PDF
    In the field of assisted reproductive technology, endometrial receptivity is a crucial aspect that affects implantation rates in in-vitro fertilization procedures; in fact, impaired endometrial receptivity has been identified as the rate-limiting step for favorable pregnancy outcomes once factors regarding embryo quality have been optimized. The endometrium is a dynamic tissue that undergoes proliferative and secretory changes in each menstrual cycle, acquiring a short and transient period of embryo receptivity known as the Window of Implantation. Precise embryo-endometrial synchrony is necessary to achieve a successful pregnancy, and it involves complex and multifactorial processes related to morphological, biochemical, and genetic changes. On that behalf, defining the receptive window of each patient for personalized embryo transfer is a current goal. Here, we review different indicators of endometrial receptivity throughout the menstrual cycle, spotlighting the opening of the window of implantation: classical histological and biochemical markers, genetic factors, leading-edge transcriptomic signatures and miRNA profiles, and novel features such as the microbiome and secretome. Understanding the molecular mechanisms behind endometrial receptivity will facilitate the optimization and improvement of infertility treatments

    Aneuploidy Rates Inversely Correlate with Implantation during <em>In Vitro</em> Fertilization Procedures: In Favor of PGT

    Get PDF
    Aneuploidy, the hold of an abnormal number of chromosomes that differs from the normal karyotype, is a recognized leading cause of miscarriage and congenital disabilities. In human gametes and embryos, aneuploidy rates are prevalent, and these rates increase with advanced maternal age; additionally, it has been suggested that hormonal stimulation for achieving in vitro fertilization (IVF) protocols further increases aneuploidy rates. Although about 65% of chromosomally abnormal embryos culminate in spontaneous miscarriages, there is still evidence of live births harboring crucial aneuploidies. Furthermore, although some frequent aneuploidies are consistent, others differ between countries, making it harder to focus on a specific set of anomalies but vital to focus regionally on those more prevalent. Preimplantation genetic testing (PGT) is a highly endorsed technique in assisted reproductive treatments to evaluate possible embryo aneuploidies, genetic defects, and congenital disorders. On this subject, this study shows that IVF aneuploidy rates in embryo cohorts of high morphological quality are inversely associated with implantation rates. In its entirety, this study reinforces the utility of PGT for embryo evaluation

    Heparin (GAG-hed) inhibits LCR activity of Human Papillomavirus type 18 by decreasing AP1 binding

    Get PDF
    BACKGROUND: High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. METHODS: Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. RESULTS: We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G(2)/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. CONCLUSION: Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data suggest that GAG-hed could have antitumoral and antiviral activity mainly by inhibiting AP1 binding to the HPV18-LCR

    The patent landscape in the field of stem cell therapy: closing the gap between research and clinic [version 4; peer review: 2 approved]

    No full text
    Stem cell technology is a powerful tool ready to respond to the needs of modern medicine that is experiencing rapid technological development. Given its potential in therapeutic applications, intellectual property rights (IPR) as a protection resource of knowledge are a relevant topic. Patent eligibility of stem cells has been controversial as restrictions to access the fundamental technologies open a gap between research and clinic. Therefore, we depicted the current patent landscape in the field to discuss if this approach moves forward in closing this breach by examining patent activity over the last decade from a transdisciplinary perspective. Stem cell therapeutic applications is an area of continuous growth where patent filing through the PCT is the preferred strategy. Patenting activity is concentrated in the USA, European Union, and Australia; this accumulation in a few key players leads to governance, regulation, and inequality concerns. To boost wealthiness and welfare in society - stem cell therapies' ultimate goal - while at post-pandemic recovery, critical elements in the field of IPR rise to overcome current limitations: to promote bridge builders able to connect the research and business worlds, regulatory updates, novel financing models, new vehicles (startups, spinouts, and spin-offs), and alternative figures of intellectual property

    Whole Genome Amplification of Day 3 or Day 5 Human Embryos Biopsies Provides a Suitable DNA Template for PCR-Based Techniques for Genotyping, a Complement of Preimplantation Genetic Testing

    No full text
    Our objective was to determine if whole genome amplification (WGA) provides suitable DNA for qPCR-based genotyping for human embryos. Single blastomeres (Day 3) or trophoblastic cells (Day 5) were isolated from 342 embryos for WGA. Comparative Genomic Hybridization determined embryo sex as well as Trisomy 18 or Trisomy 21. To determine the embryo’s sex, qPCR melting curve analysis for SRY and DYS14 was used. Logistic regression indicated a 4.4%, 57.1%, or 98.8% probability of a male embryo when neither gene, SRY only, or both genes were detected, respectively (accuracy = 94.1%, kappa = 0.882, and p<0.001). Fluorescent Capillary Electrophoresis for the amelogenin genes (AMEL) was also used to determine sex. AMELY peak’s height was higher and this peak’s presence was highly predictive of male embryos (AUC = 0.93, accuracy = 81.7%, kappa = 0.974, and p<0.001). Trisomy 18 and Trisomy 21 were determined using the threshold cycle difference for RPL17 and TTC3, respectively, which were significantly lower in the corresponding embryos. The Ct difference for TTC3 specifically determined Trisomy 21 (AUC = 0.89) and RPL17 for Trisomy 18 (AUC = 0.94). Here, WGA provides adequate DNA for PCR-based techniques for preimplantation genotyping

    The use of insulin-like growth factor 1 improved the parameters of the seminogram in a patient with severe oligoasthenoteratozoospermia

    No full text
    Male patients suffering from oligoasthenoteratozoospermia typically failed to achieve pregnancy, even with assisted reproductive technologies. Growth hormone and insulin-like growth factor 1 have been shown to regulate sperm quality parameters; therefore, the insulin-like growth factor 1 supplement could improve sperm parameters. Here, we determine the effect insulin-like growth factor 1 has on sperm parameters in a patient suffering from oligoasthenoteratozoospermia. A 47-year-old male was administered once a day 1.5 IU of insulin-like growth factor 1 by intradermal injection for 2 months. Seminogram analysis was performed before and after. Treatment with insulin-like growth factor 1 resulted in a 15.5-fold improvement in sperm concentration (1.1 × 10 6 vs 18.3 × 10 6 per mL), 71.4% change in volume (0.7 vs 1.2 mL), increased progressive motility (2% vs 43%), and the total volume of sperm with progressive motility (0% vs 23.6%). Here, we show that administering a daily dose of insulin-like growth factor 1 can improve sperm quality parameters

    Involvement of the Notch Pathway in Terminal Astrocytic Differentiation: Role of PKA

    No full text
    The Notch pathway is a highly conserved signaling system essential for modulating neurogenesis and promoting astrogenesis. Similarly, the cAMP signaling cascade can promote astrocytic commitment in several cell culture models, such as the C6 glioma cell line. These cells have the capacity to differentiate into oligodendrocytes or astrocytes, characteristics that allow their use as a glial progenitor model. In this context, we explore here the plausible involvement of cAMP in Notch-dependent signal transactions. The exposure of C6 cells to a non-hydrolysable cAMP analogue resulted in a sustained augmentation of Notch activity, as detected by nuclear translocation of its intracellular domain portion (NICD) and transcriptional activity. The cAMP effect is mediated through the activation of the γ-secretase complex, responsible for Notch cleavage and is sensitive to inhibitors of the cAMP-dependent protein kinase, PKA. As expected, Notch cleavage and nuclear translocation resulted in the up-regulation of the mRNA levels of one of its target genes, the transcription factor Hair and enhancer of split 5. Moreover, the glutamate uptake activity, as well as the expression of astrocytic markers such as glial fibrillary acidic protein, S100β protein and GLAST was also enhanced in cAMP-exposed cells. Our results clearly suggest that during the process of C6 astrocytic differentiation, cAMP activates the PKA/γ-secretase/NICD/RBPJK pathway and Notch1 expression, leading to transcriptional activation of the genes responsible for glial progenitor cell fate decision

    Acrosome reaction and chromatin integrity as additional parameters of semen analysis to predict fertilization and blastocyst rates

    No full text
    Abstract Background Traditional semen parameters have shown little to none predictive value for fertilization and blastocyst viability for a successful pregnancy. Therefore, the purpose of this study was to explore the usefulness of incorporating the acrosome reaction (AR) and chromatin integrity to conventional semen analysis to individually predict the fertile potential of sperm samples. Methods A cross-sectional study was conducted in 69 participants undergoing IVF using oocyte donation. Semen samples were collected and evaluated for: AR [spontaneous (sAR) and induced (iAR)] by flow cytometry using anti-CD46-FITC, Acrosome Response to an Ionophore Challenge (ARIC), chromatin integrity by Sperm Chromatin Structure Assay (DNA Fragmentation Index-%DFI and High DNA Stainability-%HDS), WHO semen analysis, fertilization and blastocyst rates. Results The participant age was 40.0 ± 6.1 years (66% were normozoospermic). Sperm morphology, sAR, iAR, and ARIC were associated with the fertilization (β = 3.56, R2 = 0.054; β = − 5.92, R2 = 0.276; β = 1.83, R2 = 0.150; and β = 2.10, R2 = 0.270, respectively, p < 0.05). A logit model was developed to calculate the probability of fertilization (≥ 60%) for each participant, using the sperm morphology and ARIC as independent variables, followed by ROC analysis to determine a cutoff probability of 0.65 (specificity = 80.6%, sensitivity = 63.2%). %DFI was inversely associated with the viable blastocyst rate (β = − 1.77, R2 = 0.057, p = 0.003), by the logit model and ROC analysis, a cutoff probability of 0.70 (specificity = 80.6%, sensitivity = 72.3%) was obtained to predict blastocyst viability (≥ 40%). There was no difference in the results with normozoospermic samples (n = 46). Conclusions The incorporation of ARIC and %DFI allowed to obtain predictive models for high fertilization and blastocyst rates in an individualized way, being promising tools to improve the diagnosis of male fertility potential for research or assisted reproduction, even in men with unknown infertility
    corecore