11,742 research outputs found

    Histone Mutants Separate R Loop Formation from Genome Instability Induction

    Get PDF
    R loops have positive physiological roles, but they can also be deleterious by causing genome instability, and the mechanisms for this are unknown. Here we identified yeast histone H3 and H4 mutations that facilitate R loops but do not cause instability. R loops containing single-stranded DNA (ssDNA), versus RNA-DNA hybrids alone, were demonstrated using ssDNA-specific human AID and bisulfite. Notably, they are similar size regardless of whether or not they induce genome instability. Contrary to mutants causing R loop-mediated instability, these histone mutants do not accumulate H3 serine-10 phosphate (H3S10-P). We propose a two-step mechanism in which, first, an altered chromatin facilitates R loops, and second, chromatin is modified, including H3S10-P, as a requisite for compromising genome integrity. Consistently, these histone mutations suppress the high H3S10 phosphorylation and genomic instability of hpr1 and sen1 mutants. Therefore, contrary to what was previously believed, R loops do not cause genome instability by themselves.European Research Council ERC2014 AdG669898Ministerio de Economía y Competitividad BFU2013-42918-P, BFU2016-75058-

    Incidence and type of bicuspid aortic valve in two model species

    Get PDF
    Incidence and type of bicuspid aortic valve in two model species. MC Fernández 1,2, A López-García 1,2, MT Soto 1, AC Durán 1,2 and B Fernández 1,2. 1 Department of Animal Biology, Faculty of Science, University of Málaga, Spain. 2 Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Spain. Bicuspid aortic valve (BAV) is the most frequent human congenital cardiac malformation, with an incidence of 1–2% worldwide. Two morphological types exist: type A (incidence 0.75–1.25%) and type B (incidence 0.25–0.5%), each with a distinct aetiology and natural history. Currently, ten animal models of BAV have been described in two different rodent species: one spontaneous Syrian hamster (Mesocricetus auratus) model of BAV type A and nine mutant laboratory mouse (Mus musculus) models of BAV type B. It remains to be elucidated whether the mutations leading to BAV in these models are typespecific or whether there are inter-specific differences regarding the type of BAV that hamsters, mice and humans may develop. To solve this issue, we have characterized the incidence and types of BAVs in four inbred, two outbred and two hybrid lines of Syrian hamsters (n=4,340) and in three inbred, three outbred and one hybrid lines of laboratory mice (n=1,661) by means of stereomicroscopy and scanning electron microscopy. In addition, we have reviewed and calculated the incidence and type of BAVs in the published papers dealing with this anomaly in mice. Our results indicate that the Syrian hamster develops BAVs type A and B including a variety of morphologies comparable to those of humans, whereas the mouse develops only BAVs type B with a short spectrum of valve morphologies. Thus, inter-specific differences between human and mouse aortic valves must be taken into consideration when studying valve disease in murine models. This work was supported by P10-CTS-6068.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. P10-CTS-6068

    A search for new hot subdwarf stars by means of Virtual Observatory tools

    Full text link
    Hot subdwarf stars are faint, blue objects, and are the main contributors to the far-UV excess observed in elliptical galaxies. They offer an excellent laboratory to study close and wide binary systems, and to scrutinize their interiors through asteroseismology, as some of them undergo stellar oscillations. However, their origins are still uncertain, and increasing the number of detections is crucial to undertake statistical studies. In this work, we aim at defining a strategy to find new, uncatalogued hot subdwarfs. Making use of Virtual Observatory tools we thoroughly search stellar catalogues to retrieve multi-colour photometry and astrometric information of a known sample of blue objects, including hot subdwarfs, white dwarfs, cataclysmic variables and main sequence OB stars. We define a procedure to discriminate among these spectral classes, particularly designed to obtain a hot subdwarf sample with a low contamination factor. In order to check the validity of the method, this procedure is then applied to two test sky regions: the Kepler FoV and to a test region of around (RA:225, DEC:5) deg. As a result, we obtained 38 hot subdwarf candidates, 23 of which had already a spectral classification. We have acquired spectroscopy for three other targets, and four additional ones have an available SDSS spectrum, which we used to determine their spectral type. A temperature estimate is provided for the candidates based on their spectral energy distribution, considering two-atmospheres fit for objects with clear infrared excess. Eventually, out of 30 candidates with spectral classification, 26 objects were confirmed to be hot subdwarfs, yielding a contamination factor of only 13%. The high rate of success demonstrates the validity of the proposed strategy to find new uncatalogued hot subdwarfs. An application of this method to the entire sky will be presented in a forthcoming work.Comment: 13 pages, 7 figure

    Is the bulbus arteriosus of fish homologous to the mamalian intrapericardial thoracic arteries?

    Get PDF
    El resumen aparece en el Program & Abstracts of the 10th International Congress of Vertebrate Morphology, Barcelona 2013.Anatomical Record, Volume 296, Special Feature — 1: P-089.Two major findings have significantly improved our understanding of the embryology and evolution of the arterial pole of the vertebrate heart (APVH): 1) a new embryonic presumptive cardiac tissue, named second heart field (SHF), forms the myocardium of the outflow tract, and the walls of the ascending aorta (AA) and the pulmonary trunk (PT) in mammals and birds; 2) the bulbus arteriosus (BA), previously thought to be an actinopterygian apomorphy, is present in all basal Vertebrates, and probably derives from the SHF. We hypothesized that the intrapericardial portions of the AA and the PT of mammals are homologous to the BA of basal vertebrates. To test this, we performed 1) a literature review of the anatomy and embryology of the APVH; 2) novel anatomical, histomorphological, and embryological analyses of the APVH, comparing basal (Galeus atlanticus), with apical (Mus musculus and Mesocricetus auratus) vertrebrates. Evidence obtained: 1) Anatomically, BA, AA, and PT are muscular tubes into the pericardial cavity, which connect the distal myocardial outflow tracts with the aortic arch system. Coronary arteries run through or originate at these anatomical structures; 2) Histologically, BA, AA, and PT show an inner layer of endothelium covered by circumferentially oriented smooth muscle cells, collagen fibers, and lamellar elastin. The histomorphological differences between the BA and the ventral aorta parallel those between intrapericardial and extrapericardial great arteries; 3) Embryologically, BA, AA, and PT are composed of smooth muscle cells derived from the SHF. They show a similar mechanism of development: incorporation of SHF‐derived cells into the pericardial cavity, and distal‐to‐proximal differentiation into an elastogenic cell linage. In conclusion, anatomical, histological and embryological evidence supports the hypothesis that SHF is a developmental unit responsible for the formation of the APVH. The BA and the intrapericardial portions of the great arteries must be considered homologous structures.Proyecto P10-CTS-6068 (Junta de Andalucía); proyecto CGL-16417 (Ministerio de Ciencia e Innovación); Fondos FEDER

    Different laboratory mouse strains show distinct coronary artery patterns

    Get PDF
    Different laboratory mouse strains show distinct coronary artery patterns. MC Fernández 1,2, A López-García 1,2, M Lorenzale 1, V Sans-Coma 1,2, AC Durán 1,2 and B Fernández 1,2. 1 Department of Animal Biology, Faculty of Science, University of Málaga, Spain. 2 Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Spain. The C57BL/6 (BL/6) mouse strain is one of the most common models in research involving laboratory animals, particularly on studies of the cardiovascular system. It has been reported (Fernandez B, et al. J Anat 2008 212(1):12–18) that this strain presents an unusual coronary artery (CA) pattern, including congenital CA anomalies, which are clinically relevant in humans. The aim of the present study was to elucidate whether this pattern is strain-specific or appears in other mouse populations. We used stereomicroscopy, scanning electron microscopy, light microscopy, and a corrosion cast technique in 597 adult mice belonging to three inbred strains (BL/6, Balb/c, DBA/2), three outbred stocks (CD1, OF1, NMR1), two hybrid lines (129sv x BL/6, CD2F1) and wild mice. Lock-like ostium was only detected in BL/6 mice, whereas left septal artery, accessory ostium, high take-off, intramural course, and solitary ostium of one CA in aorta were present in different laboratory strains and in wild mice. However, each mouse population showed a specific incidence of these coronary conditions. These results should be taken into account when studying the murine coronary system, especially in CA occlusion experiments and in studies on cardiovascular development involving murine mutant lines. In addition, we propose that several laboratory mouse strains may serve as appropriate animal models to study several clinically relevant human congenital anomalies of the CAs. Our results suggest that some of these CA anomalies are subject to a simple mode of inheritance. This work was supported by P10-CTS-6068 and PI- 0888-2012.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. P10-CTS-6068. PI-0888-201
    corecore