1,437 research outputs found

    A theory of non-local linear drift wave transport

    Get PDF
    Transport events in turbulent tokamak plasmas often exhibit non-local or non-diffusive action at a distance features that so far have eluded a conclusive theoretical description. In this paper a theory of non-local transport is investigated through a Fokker-Planck equation with fractional velocity derivatives. A dispersion relation for density gradient driven linear drift modes is derived including the effects of the fractional velocity derivative in the Fokker-Planck equation. It is found that a small deviation (a few percent) from the Maxwellian distribution function alters the dispersion relation such that the growth rates are substantially increased and thereby may cause enhanced levels of transport.Comment: 22 pages, 2 figures. Manuscript submitted to Physics of Plasma

    A Fractional Fokker-Planck Model for Anomalous Diffusion

    Get PDF
    In this paper we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality observing the transition from a Gaussian distribution to a L\'evy distribution. The statistical properties of the distribution functions are assessed by a generalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.Comment: 22 pages, 14 figure

    Rigorous upper bound for the persistent current in systems with toroidal geometry

    Full text link
    It is shown that the absolute value of the persistent current in a system with toroidal geometry is rigorously less than or equal to eN/4πmr02e \hbar N /4 \pi m r_0^2, where NN is the number of electrons, and r02=ri2r_0^{-2} = \langle r_i^{-2}\rangle is the equilibrium average of the inverse of the square of the distance of an electron from an axis threading the torus. This result is valid in three and two dimensions for arbitrary interactions, impurity potentials, and magnetic fields.Comment: 10 pages + 1 figure available by request, Revte

    Fostering collective intelligence education

    Get PDF
    New educational models are necessary to update learning environments to the digitally shared communication and information. Collective intelligence is an emerging field that already has a significant impact in many areas and will have great implications in education, not only from the side of new methodologies but also as a challenge for education. This paper proposes an approach to a collective intelligence model of teaching using Internet to combine two strategies: idea management and real time assessment in the class. A digital tool named Fabricius has been created supporting these two elements to foster the collaboration and engagement of students in the learning process. As a result of the research we propose a list of KPI trying to measure individual and collective performance. We are conscious that this is just a first approach to define which aspects of a class following a course can be qualified and quantified.Postprint (published version

    Hybridization gap and anisotropic far-infrared optical conductivity of URu2Si2

    Full text link
    We performed far-infrared optical spectroscopy measurements on the heavy fermion compound URu 2 Si 2 as a function of temperature. The light's electric-field was applied along the a-axis or the c-axis of the tetragonal structure. We show that in addition to a pronounced anisotropy, the optical conductivity exhibits for both axis a partial suppression of spectral weight around 12 meV and below 30 K. We attribute these observations to a change in the bandstructure below 30 K. However, since these changes have no noticeable impact on the entropy nor on the DC transport properties, we suggest that this is a crossover phenomenon rather than a thermodynamic phase transition.Comment: To be published in Physical Review

    Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells

    Get PDF
    Raster image correlation spectroscopy (RICS) measures the diffusion of fluorescently labelled molecules from stacks of confocal microscopy images by analysing correlations within the image. RICS enables the observation of a greater and, thus, more representative area of a biological system as compared to other single molecule approaches. Photothermal microscopy of gold nanoparticles allows long-term imaging of the same labelled molecules without photobleaching. Here, we implement RICS analysis on a photothermal microscope. The imaging of single gold nanoparticles at pixel dwell times short enough for RICS (60 μs) with a piezo-driven photothermal heterodyne microscope is demonstrated (photothermal raster image correlation spectroscopy, PhRICS). As a proof of principle, PhRICS is used to measure the diffusion coefficient of gold nanoparticles in glycerol : water solutions. The diffusion coefficients of the nanoparticles measured by PhRICS are consistent with their size, determined by transmission electron microscopy. PhRICS was then used to probe the diffusion speed of gold nanoparticle-labelled fibroblast growth factor 2 (FGF2) bound to heparan sulfate in the pericellular matrix of live fibroblast cells. The data are consistent with previous single nanoparticle tracking studies of the diffusion of FGF2 on these cells. Importantly, the data reveal faster FGF2 movement, previously inaccessible by photothermal tracking, and suggest that inhomogeneity in the distribution of bound FGF2 is dynamic

    Extremely Large and Anisotropic Upper Critical Field and the Ferromagnetic Instability in UCoGe

    Full text link
    Magnetoresistivity measurements with fine tuning of the field direction on high quality single crystals of the ferromagnetic superconductor UCoGe show anomalous anisotropy of the upper critical field H_c2. H_c2 for H // b-axis (H_c2^b) in the orthorhombic crystal structure is strongly enhanced with decreasing temperature with an S-shape and reaches nearly 20 T at 0 K. The temperature dependence of H_c2^a shows upward curvature with a low temperature value exceeding 30 T, while H_c2^c at 0 K is very small (~ 0.6 T). Contrary to conventional ferromagnets, the decrease of the Curie temperature with increasing field for H // b-axis marked by an enhancement of the effective mass of the conduction electrons appears to be the origin of the S-shaped H_c2^b curve. These results indicate that the field-induced ferromagnetic instability or magnetic quantum criticality reinforces superconductivity.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    High-Field Superconductivity at an Electronic Topological Transition in URhGe

    Full text link
    The emergence of superconductivity at high magnetic fields in URhGe is regarded as a paradigm for new state formation approaching a quantum critical point. Until now, a divergence of the quasiparticle mass at the metamagnetic transition was considered essential for superconductivity to survive at magnetic fields above 30 tesla. Here we report the observation of quantum oscillations in URhGe revealing a tiny pocket of heavy quasiparticles that shrinks continuously with increasing magnetic field, and finally disappears at a topological Fermi surface transition close to or at the metamagnetic field. The quasiparticle mass decreases and remains finite, implying that the Fermi velocity vanishes due to the collapse of the Fermi wavevector. This offers a novel explanation for the re-emergence of superconductivity at extreme magnetic fields and makes URhGe the first proven example of a material where magnetic field-tuning of the Fermi surface, rather than quantum criticality alone, governs quantum phase formation.Comment: A revised version has been accepted for publication in Nature Physic

    Solitons in cavity-QED arrays containing interacting qubits

    Full text link
    We reveal the existence of polariton soliton solutions in the array of weakly coupled optical cavities, each containing an ensemble of interacting qubits. An effective complex Ginzburg-Landau equation is derived in the continuum limit taking into account the effects of cavity field dissipation and qubit dephasing. We have shown that an enhancement of the induced nonlinearity can be achieved by two order of the magnitude with a negative interaction strength which implies a large negative qubit-field detuning as well. Bright solitons are found to be supported under perturbations only in the upper (optical) branch of polaritons, for which the corresponding group velocity is controlled by tuning the interacting strength. With the help of perturbation theory for solitons, we also demonstrate that the group velocity of these polariton solitons is suppressed by the diffusion process
    corecore