31 research outputs found
Tailoring Fibroblast-Activation Protein Targeting for Theranostics: A Comparative Preclinical Evaluation of the 68Ga- and 177Lu-Labeled Monomeric and Dimeric Fibroblast-Activation Protein Inhibitors DOTA.SA.FAPi and DOTAGA.(SA.FAPi)2.
BACKGROUND
FAP radiopharmaceuticals show promise for cancer diagnosis; however, their limited tumor residency hinders treatment. This study compared two FAPi derivatives, DOTA.SA.FAPi and DOTAGA.(SA.FAPi)2, labeled with gallium-68 and lutetium-177, aiming to determine an optimum combination for creating theranostic pairs.
METHODS
The radiotracers were studied for lipophilicity, binding to human serum proteins, and binding to human cancer-associated fibroblasts (CAFs) in vitro, including saturation and internalization/externalization studies. PET/SPECT/CT and biodistribution studies were conducted in PC3 and U87MG xenografts for [68Ga]Ga-DOTA.SA.FAPi and [68Ga]Ga-DOTAGA.(SA.FAPi)2. [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2, were evaluated in PC3 xenografts. Biodistribution studies of [68Ga]Ga-DOTA.SA.FAPi were performed in healthy male and female mice.
RESULTS
All radiotracers exhibited strong binding to FAP. Their internalization rate was fast while only [177Lu]Lu-DOTAGA.(SA.FAPi)2 was retained longer in CAFs. [68Ga]Ga-DOTAGA.(SA.FAPi)2 and [177Lu]Lu-DOTAGA.(SA.FAPi)2 displayed elevated lipophilicity and affinity for human serum proteins compared to [68Ga]Ga-DOTA.SA.FAPi and [177Lu]Lu-DOTA.SA.FAPi. In vivo studies revealed slower washout of [68Ga]Ga-DOTAGA.(SA.FAPi)2 within 3 h compared to [68Ga]Ga-DOTA.SA.FAPi. The tumor-to-tissue ratios of [68Ga]Ga-DOTAGA.(SA.FAPi)2 versus [68Ga]Ga-DOTA.SA.FAPi did not exhibit any significant differences. [177Lu]Lu-DOTAGA.(SA.FAPi)2 maintained a significant tumor uptake even after 96 h p.i. compared to [177Lu]Lu-DOTA.SA.FAPi.
CONCLUSIONS
Dimeric compounds hold promise for therapy, while monomers are better suited for diagnostics. Finding the right combination is essential for effective disease management
Translational assessment of a DATA-functionalized FAP inhibitor with facile 68Ga-labeling at room temperature.
PURPOSE
The present study aims at evaluating the preclinical and the clinical performance of [68Ga]Ga-DATA5m.SA.FAPi, which has the advantage to be labeled with gallium-68 at room temperature.
METHODS
[68Ga]Ga-DATA5m.SA.FAPi was assessed in vitro on FAP-expressing stromal cells, followed by biodistribution and in vivo imaging on prostate and glioblastoma xenografts. Moreover, the clinical assessment of [68Ga]Ga-DATA5m.SA.FAPi was conducted on six patients with prostate cancer, aiming on investigating, biodistribution, biokinetics, and determining tumor uptake.
RESULTS
[68Ga]Ga-DATA5m.SA.FAPi is quantitatively prepared in an instant kit-type version at room temperature. It demonstrated high stability in human serum, affinity for FAP in the low nanomolar range, and high internalization rate when associated with CAFs. Biodistribution and PET studies in prostate and glioblastoma xenografts revealed high and specific tumor uptake. Elimination of the radiotracer mainly occurred through the urinary tract. The clinical data are in accordance with the preclinical data concerning the organ receiving the highest absorbed dose (urinary bladder wall, heart wall, spleen, and kidneys). Different to the small-animal data, uptake of [68Ga]Ga-DATA5m.SA.FAPi in tumor lesions is rapid and stable and tumor-to-organ and tumor-to-blood uptake ratios are high.
CONCLUSION
The radiochemical, preclinical, and clinical data obtained in this study strongly support further development of [68Ga]Ga-DATA5m.SA.FAPi as a diagnostic tool for FAP imaging
Calculations of binding affinity between C8-substituted GTP analogs and the bacterial cell-division protein FtsZ
The FtsZ protein is a self-polymerizing GTPase that plays a central role in bacterial cell division. Several C8-substituted GTP analogs are known to inhibit the polymerization of FtsZ by competing for the same binding site as its endogenous activating ligand GTP. Free energy calculations of the relative binding affinities to FtsZ for a set of five C8-substituted GTP analogs were performed. The calculated values agree well with the available experimental data, and the main contribution to the free energy differences is determined to be the conformational restriction of the ligands. The dihedral angle distributions around the glycosidic bond of these compounds in water are known to vary considerably depending on the physicochemical properties of the substituent at C8. However, within the FtsZ protein, this substitution has a negligible influence on the dihedral angle distributions, which fall within the narrow range of −140° to −90° for all investigated compounds. The corresponding ensemble average of the coupling constants 3J(C4,H1′) is calculated to be 2.95 ± 0.1 Hz. The contribution of the conformational selection of the GTP analogs upon binding was quantified from the corresponding populations. The obtained restraining free energy values follow the same trend as the relative binding affinities to FtsZ, indicating their dominant contribution
GRPR-targeting radiotheranostics for breast cancer management
Breast Cancer (BC) is the most common cancer worldwide and, despite the advancements made toward early diagnosis and novel treatments, there is an urgent need to reduce its mortality. The Gastrin-Releasing Peptide Receptor (GRPR) is a promising target for the development of theranostic radioligands for luminal BC with positive estrogen receptor (ER) expression, because GRPR is expressed not only in primary lesions but also in lymph nodes and distant metastasis. In the last decades, several GRPR-targeting molecules have been evaluated both at preclinical and clinical level, however, most of the studies have been focused on prostate cancer (PC). Nonetheless, given the relevance of non-invasive diagnosis and potential treatment of BC through Peptide Receptor Radioligand Therapy (PRRT), this review aims at collecting the available preclinical and clinical data on GRPR-targeting radiopeptides for the imaging and therapy of BC, to better understand the current state-of-the-art and identify future perspectives and possible limitations to their clinical translation. In fact, since luminal-like tumors account for approximately 80% of all BC, many BC patients are likely to benefit from the development of GRPR-radiotheranostics
In vitro and in vivo evaluation of the bifunctional chelator NODIA-Me in combination with a prostate-specific membrane antigen targeting vector
Introduction
We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three five-membered azaheterocyclic arms for complexation of the PET nuclides gallium-68 and copper-64. The main objective of this study was to evaluate the stability and pharmacokinetics of 68Ga- and 64Cu-complexes of the bifunctional chelator NODIA-Me 1 covalently bound to a PSMA targeting vector in vivo.
Methods
NODIA-Me 1 was conjugated to the PSMA targeting Glu-NH-CO-NH-Lys moiety to give the bioconjugate NODIA-Me-NaI-Ahx-PSMA 4. The stability of [68Ga]4 and [64Cu]4 was assessed in vitro by serum stability studies. The PSMA binding affinity was determined in competitive cell experiments in LNCaP cells using 68Ga-PSMA-HBED-CC as radioligand. The stability and pharmacokinetics of [68Ga]4 and [64Cu]4 was evaluated by PET imaging and ex vivo biodistribution studies in mice bearing subcutaneous LNCaP tumors.
Results
In human serum, [68Ga]4 and [64Cu]4 remained intact to 85% (3 h) and 92% (24 h), respectively. Nature of the metal chelate influenced PSMA binding affinity with IC50 of 233 ± 10 nM for uncomplexed 4, 681 ± 7 nM for Cu-4 and 176 ± 10 nM for Ga-4. In animal studies, [68Ga]4 and [64Cu]4 revealed low uptake (≤1% IA g−1) in the majority of organs. Kidney uptake at 1 h p.i. was 6.28 ± 0.92% IA g−1 and 4.96 ± 0.79% IA g−1 and specific tumor uptake was 1.33 ± 0.46% IA g−1 and 2.15 ± 0.38% IA g−1 for [68Ga]4 and [64Cu]4, respectively.
Conclusion
The bifunctional chelator NODIA-Me 1 was successfully conjugated to a PSMA targeting moiety. In small-animal PET imaging and ex vivo biodistribution studies, 68Ga- and 64Cu-labelled conjugates specifically delineated PSMA-positive LNCaP tumors and exhibited rapid renal clearance from non-target tissues with no significant demetallation/transchelation in vivo. The results support further development of this novel chelating platform for production of 68Ga- and 64Cu-labelled radiopharmaceuticals
Preparation and preclinical evaluation of a 68Ga-labelled c(RGDfK) conjugate comprising the bifunctional chelator NODIA-Me
Abstract Background We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three, five-membered azaheterocyclic arms for the development of 68Ga- and 64Cu-based radiopharmaceuticals. Here, a 68Ga-labelled conjugate comprising the bifunctional chelator NODIA-Me in combination with the αvß3-targeting peptide c(RGDfK) has been synthesized and characterized. The primary aim was to evaluate further the potential of our NODIA-Me chelating system for the development of 68Ga-labelled radiotracers. Results The BFC NODIA-Me was conjugated to c(RGDfK) by standard peptide chemistry to obtain the final bioconjugate NODIA-Me-c(RGDfK) 3 in 72% yield. Labelling with [68Ga]GaCl3 was accomplished in a fully automated, cGMP compliant process to give [68Ga]3 in high radiochemical yield (98%) and moderate specific activity (~ 8 MBq nmol− 1). Incorporation of the Ga-NODIA-Me chelate to c(RGDfK) 2 had only minimal influence on the affinity to integrin αvß3 (IC50 values [natGa]3 = 205.1 ± 1.4 nM, c(RGDfK) 2 = 159.5 ± 1.3 nM) as determined in competitive cell binding experiments in U-87 MG cell line. In small-animal PET imaging and ex vivo biodistribution studies, the radiotracer [68Ga]3 showed low uptake in non-target organs and specific tumor uptake in U-87 MG tumors. Conclusion The results suggest that the bifunctional chelator NODIA-Me is an interesting alternative to existing ligands for the development of 68Ga-labelled radiopharmaceuticals
3D printing of radioactive phantoms for nuclear medicine imaging.
BACKGROUND
For multicenter clinical studies, PET/CT and SPECT/CT scanners need to be validated to ensure comparability between various scanner types and brands. This validation is usually performed using hollow phantoms filled with radioactive liquids. In recent years, 3D printing technology has gained increasing popularity for manufacturing of phantoms, as it is cost-efficient and allows preparation of phantoms of almost any shape. So far, however, direct 3D printing with radioactive building materials has not yet been reported. The aim of this work was to develop a procedure for preparation of 99mTc-containing building materials and demonstrate successful application of this material for 3D printing of several test objects.
METHOD
The desired activity of a [99mTc]pertechnetate solution eluted from a 99Mo/99mTc-generator was added to the liquid 3D building material, followed by a minute amount of trioctylphosphine. The resulting two-phase mixture was thoroughly mixed. Following separation of the phases and chemical removal of traces of water, the radioactive building material was diluted with the required volume of non-radioactive building material and directly used for 3D printing.
RESULTS
Using our optimized extraction protocol with trioctylphosphine as complex-forming phase transfer agent, technetium-99m was efficiently transferred from the aqueous 99Mo/99mTc-generator eluate into the organic liquid resin monomer. The observed radioactivity concentration ratio between the organic phase and the water phase was > 2000:1. The radioactivity was homogeneously distributed in the liquid resin monomer. We did not note differences in the 3D printing behavior of the radiolabeled and the unlabeled organic liquid resin monomers. Radio-TLC and SPECT studies showed homogenous 2D and 3D distribution of radioactivity throughout the printed phantoms. The radioactivity was stably bound in the resin, apart from a small amount of surface-extractable radioactivity under harsh conditions (ethanol at 50 °C).
CONCLUSIONS
3D printing of radioactive phantoms using 99mTc-containing building materials is feasible. Compared to the classical fillable phantoms, 3D printing with radioactive building materials allows manufacturing of phantoms without cold walls and in almost any shape. Related procedures with longer-lived radionuclides will enable production of phantoms for scanner validation and quality control
In vitro and in vivo evaluation of the bifunctional chelator NODIA-Me in combination with a prostate-specific membrane antigen targeting vector
INTRODUCTION:
We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three five-membered azaheterocyclic arms for complexation of the PET nuclides gallium-68 and copper-64. The main objective of this study was to evaluate the stability and pharmacokinetics of 68Ga- and 64Cu-complexes of the bifunctional chelator NODIA-Me 1 covalently bound to a PSMA targeting vector in vivo.
METHODS:
NODIA-Me 1 was conjugated to the PSMA targeting Glu-NH-CO-NH-Lys moiety to give the bioconjugate NODIA-Me-NaI-Ahx-PSMA 4. The stability of [68Ga]4 and [64Cu]4 was assessed in vitro by serum stability studies. The PSMA binding affinity was determined in competitive cell experiments in LNCaP cells using 68Ga-PSMA-HBED-CC as radioligand. The stability and pharmacokinetics of [68Ga]4 and [64Cu]4 was evaluated by PET imaging and ex vivo biodistribution studies in mice bearing subcutaneous LNCaP tumors.
RESULTS:
In human serum, [68Ga]4 and [64Cu]4 remained intact to 85% (3 h) and 92% (24 h), respectively. Nature of the metal chelate influenced PSMA binding affinity with IC50 of 233 ± 10 nM for uncomplexed 4, 681 ± 7 nM for Cu-4 and 176 ± 10 nM for Ga-4. In animal studies, [68Ga]4 and [64Cu]4 revealed low uptake (≤1% IA g-1) in the majority of organs. Kidney uptake at 1 h p.i. was 6.28 ± 0.92% IA g-1 and 4.96 ± 0.79% IA g-1 and specific tumor uptake was 1.33 ± 0.46% IA g-1 and 2.15 ± 0.38% IA g-1 for [68Ga]4 and [64Cu]4, respectively.
CONCLUSION:
The bifunctional chelator NODIA-Me 1 was successfully conjugated to a PSMA targeting moiety. In small-animal PET imaging and ex vivo biodistribution studies, 68Ga- and 64Cu-labelled conjugates specifically delineated PSMA-positive LNCaP tumors and exhibited rapid renal clearance from non-target tissues with no significant demetallation/transchelation in vivo. The results support further development of this novel chelating platform for production of 68Ga- and 64Cu-labelled radiopharmaceuticals
18 F-labeled analogues of anti-tumor agent calixarene 0118
Calix[4]arene compound 0118 , a topomimetic of the antiangiogenic amphipathic peptide anginex targeting galectin-1, is currently in Phase I clinical trials with terminal cancer patients. Radiolabelled analogues of compound 0118 may serve as a development tool in PK/PD studies of this class of calix[4]arene compounds, and may prove highly valuable for patient stratification and therapy monitoring. So far, such radiotracers have not been described. In this work, we have designed compound 0118 analogues containing a terminal alkyne functional group for introduction of an F-18 label via Cu(I)-catalyzed 1,3-dipolar cycloaddition of 2-[18F]fluoroethylazide