60 research outputs found

    Predictive tracking with improved motion models for optical belt sorting

    Get PDF
    Optical belt sorters are a versatile means to sort bulk materials. In previous work, we presented a novel design of an optical belt sorter, which includes an area scan camera instead of a line scan camera. Line scan cameras, which are well-established in optical belt sorting, only allow for a single observation of each particle. Using multitarget tracking, the data of the area scan camera can be used to derive a part of the trajectory of each particle. The knowledge of the trajectories can be used to generate accurate predictions as to when and where each particle passes the separation mechanism. Accurate predictions are key to achieve high quality sorting results. The accuracy of the trajectories and the predictions heavily depends on the motion model used. In an evaluation based on a simulation that provides us with ground truth trajectories, we previously identified a bias in the temporal component of the prediction. In this paper, we analyze the simulation-based ground truth data of the motion of different bulk materials and derive models specifically tailored to the generation of accurate predictions for particles traveling on a conveyor belt. The derived models are evaluated using simulation data involving three different bulk materials. The evaluation shows that the constant velocity model and constant acceleration model can be outperformed by utilizing the similarities in the motion behavior of particles of the same type

    Escherichia coli Frameshift Mutation Rate Depends on the Chromosomal Context but Not on the GATC Content Near the Mutation Site

    Get PDF
    Different studies have suggested that mutation rate varies at different positions in the genome. In this work we analyzed if the chromosomal context and/or the presence of GATC sites can affect the frameshift mutation rate in the Escherichia coli genome. We show that in a mismatch repair deficient background, a condition where the mutation rate reflects the fidelity of the DNA polymerization process, the frameshift mutation rate could vary up to four times among different chromosomal contexts. Furthermore, the mismatch repair efficiency could vary up to eight times when compared at different chromosomal locations, indicating that detection and/or repair of frameshift events also depends on the chromosomal context. Also, GATC sequences have been proved to be essential for the correct functioning of the E. coli mismatch repair system. Using bacteriophage heteroduplexes molecules it has been shown that GATC influence the mismatch repair efficiency in a distance- and number-dependent manner, being almost nonfunctional when GATC sequences are located at 1 kb or more from the mutation site. Interestingly, we found that in E. coli genomic DNA the mismatch repair system can efficiently function even if the nearest GATC sequence is located more than 2 kb away from the mutation site. The results presented in this work show that even though frameshift mutations can be efficiently generated and/or repaired anywhere in the genome, these processes can be modulated by the chromosomal context that surrounds the mutation site

    Zu den Qualitätsindikatoren der DGPPN. Leserbrief

    No full text
    Steinert T, Driessen M, Längle G, Richter D, Wolfersdorf M. Zu den Qualitätsindikatoren der DGPPN. Leserbrief. Der Nervenarzt. 2013;84(11):1382-1384

    A parallel control architecture for industrial robot cells

    Get PDF
    We present a parallel control architecture for industrial robot cells. It is based on closed functional components arranged in a flat communication hierarchy. The components may be executed by different processing elements, and each component itself may run on multiple processing elements. The system is driven by the instructions of a central cell control component. We set up necessary requirements for industrial robot cells and possible parallelization levels. These are met by the suggested robot control architecture. As an example we present a robot work cell and a component for motion planning, which fits well in this concept

    Biologic and Cytogenetic Characterization of Three Human Medullary Thyroid Carcinomas in Culture

    No full text
    Neuroendocrine features and cytogenetic abnormalities of one continuous cell line (MTC-SK) and two long-term cultures (GER, STAH) derived from three sporadic cases of human medullary thyroid carcinomas (MTCs) were studied. Specific neuroendocrine markers (NSE, chromogranins, calcitonin, calcitonin gene-related peptide) were identified by electron microscopy and immunocytochemistry. In situ hybridochemistry and Northern blot analysis confirmed endocrine activity. Cytogenetic studies of the cell line MTC-SK revealed three consistent marker chromosomes, t(3;10), 11p+, and 22p+. Cells of long-term cultures GER and STAH exhibited a consistent translocation t(2;18), a trisomy 7, and two consistent marker chromosomes der3 and 5p+, respectively. Recently, we have isolated 12 stable clones of this MTC-SK cell line, which showed two different growth patterns. Quantitative measurement of mitotic activity by flow cytometry and semiquantitative analysis of AgNOR-, Ki67-, and Cyclin/PCNA-(immuno)reactivity showed different DNA composition and duplication rates, indicating at least two subpopulations. Some of our clones developed a new consistent marker (i.e., an unbalanced translocation between mar11p+ and 1q). However, no correlations between chromosome findings, growth rate, and neuroendocrine markers were observed
    • …
    corecore