4,772 research outputs found

    Patients With Kidney Cancer

    Get PDF
    To develop a preoperative prognostic model in order to predict recurrence-free survival in patients with nonmetastatic kidney cancer.A multi-institutional data base of 1889 patients who underwent surgical resection between 1987 and 2007 for kidney cancer was retrospectively analyzed. Preoperative variables were defined as age, gender, presentation, size, presence of radiological lymph nodes and clinical stage. Univariate and multivariate analyses of the variables were performed using the Cox proportional hazards regression model. A model was developed with preoperative variables as predictors of recurrence after nephrectomy. Internal validation was performed by Harrells concordance index.The median follow-up was 23.6 months (1222 months). During the follow-up, 258 patients (13.7) developed cancer recurrence. The median follow-up for patients who did not develop recurrence was 25 months. The median time from surgery to recurrence was 13 months. The 5-year freedom from recurrence probability was 78.6. All variables except age were associated with freedom from recurrence in multivariate analyses (P 0.05). Age was marginally significant in the univariate analysis. All variables were included in the predictive model. The calculated c-index was 0.747.This preoperative model utilizes easy to obtain clinical variables and predicts the likelihood of development of recurrent disease in patients with kidney tumors

    The Time of Flight System of the AMS-02 Space Experiment

    Full text link
    The Time-of-Flight (TOF) system of the AMS detector gives the fast trigger to the read out electronics and measures velocity, direction and charge of the crossing particles. The new version of the detector (called AMS-02) will be installed on the International Space Station on March 2004. The fringing field of the AMS-02 superconducting magnet is 1.0÷2.51.0\div2.5 kG where the photomultiplers (PM) are installed. In order to be able to operate with this residual field, a new type of PM was chosen and the mechanical design was constrained by requiring to minimize the angle between the magnetic field vector and the PM axis. Due to strong field and to the curved light guides, the time resolution will be 150÷180150\div180 ps, while the new electronics will allow for a better charge measurement.Comment: 5 pages, 4 figures. Proc. of 7th Int. Conf. on Adv. Tech. and Part. Phys., 15-19 October 2001,Como (Italy

    A narrow band neutrino beam with high precision flux measurements

    Full text link
    The ENUBET facility is a proposed narrow band neutrino beam where lepton production is monitored at single particle level in the instrumented decay tunnel. This facility addresses simultaneously the two most important challenges for the next generation of cross section experiments: a superior control of the flux and flavor composition at source and a high level of tunability and precision in the selection of the energy of the outcoming neutrinos. We report here the latest results in the development and test of the instrumentation for the decay tunnel. Special emphasis is given to irradiation tests of the photo-sensors performed at INFN-LNL and CERN in 2017 and to the first application of polysiloxane-based scintillators in high energy physics.Comment: Poster presented at NuPhys2017 (London, 20-22 December 2017). 5 pages, 2 figure

    The ENUBET Beamline

    Full text link
    The ENUBET ERC project (2016-2021) is studying a narrow band neutrino beam where lepton production can be monitored at single particle level in an instrumented decay tunnel. This would allow to measure νμ\nu_{\mu} and νe\nu_{e} cross sections with a precision improved by about one order of magnitude compared to present results. In this proceeding we describe a first realistic design of the hadron beamline based on a dipole coupled to a pair of quadrupole triplets along with the optimisation guidelines and the results of a simulation based on G4beamline. A static focusing design, though less efficient than a horn-based solution, results several times more efficient than originally expected. It works with slow proton extractions reducing drastically pile-up effects in the decay tunnel and it paves the way towards a time-tagged neutrino beam. On the other hand a horn-based transferline would ensure higher yields at the tunnel entrance. The first studies conducted at CERN to implement the synchronization between a few ms proton extraction and a horn pulse of 2-10 ms are also described.Comment: Poster presented at NuPhys2018 (London 19-21 December 2018). 4 pages, 3 figure

    The EEE Project

    Get PDF
    The new experiment ``Extreme Energy Events'' (EEE) to detect extensive air showers through muon detection is starting in Italy. The use of particle detectors based on Multigap Resistive Plate Chambers (MRPC) will allow to determine with a very high accuracy the direction of the axis of cosmic ray showers initiated by primaries of ultra-high energy, together with a high temporal resolution. The installation of many of such 'telescopes' in numerous High Schools scattered all over the Italian territory will also allow to investigate coincidences between multiple primaries producing distant showers. Here we present the experimental apparatus and its tasks.Comment: 4 pages, 29th ICRC 2005, Pune, Indi

    The AMS-02 Time of Flight System. Final Design

    Full text link
    The AMS-02 detector is a superconducting magnetic spectrometer that will operate on the International Space Station. The time of flight (TOF) system of AMS-02 is composed by four scintillator planes with 8, 8, 10, 8 counters each, read at both ends by a total of 144 phototubes. This paper describes the new design, the expected performances, and shows preliminary results of the ion beam test carried on at CERN on October 2002.Comment: 4 pages, 6 EPS figures. Proc. of the 28th ICRC (2003

    The dramatic COVID-19 outbreak in italy is responsible of a huge drop in urological surgical activity: A multicenter observational study

    Get PDF
    OBJECTIVE: Italy is facing the COVID-19 outbreak with an abrupt reorganization of its national health-system, in order to augment care provision to symptomatic patients. The sudden shift of personnel and resources towards COVID-19 care has led to the reduction of surgery, with possible severe drawbacks. The aim of the study is to describe the trend in surgical volume in urology, in Italy. MATERIALS AND METHODS: Thirty-three urological units with physicians affiliated to the AGILE consortium were involved in a survey. Urologists were asked to report the amount of surgical elective procedures week-by-week, from the beginning of the emergency to the following month. RESULTS: The 33 hospitals involved in the study account, globally, for 22,945 beds and are distributed in 13/20 Italian regions. Before the outbreak, the involved urology units performed an overall amount of 1,213 procedures per week, half of which were oncological. One month later, the amount of surgery declined by 78%. Lombardy, the first region with positive-cases, experienced a 94% reduction. The decrease in oncological and non-oncological surgical activity was 35,9% and 89%, respectively. The trend of the decline showed a delay of roughly 2 weeks for the other regions. CONCLUSION: Italy, the country with the highest fatality rate from COVID-19, is experiencing a sudden decline in surgical activity. It is inversely related to the increase in COVID-19 care, with potential harm particularly in the oncological field. The Italian experience can be helpful for future surgical pre-planning in other countries not so hardly hit by the disease yet
    corecore