11 research outputs found
PKCε Stimulated Arginine Methylation of RIP140 for Its Nuclear-Cytoplasmic Export in Adipocyte Differentiation
Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that plays roles in diverse metabolic processes including fat accumulation in adipocytes. Previously we identified three methylated arginine residues in RIP140, which rendered its export to the cytoplasm; but it was unclear what triggered RIP140 arginine methylation.In this study, we determined the activated PKCepsilon as the specific trigger for RIP140 arginine methylation and its subsequent export. We identified two PKCepsilon-phosphorylated residues of RIP140, Ser-102 and Ser-1003, which synergistically stimulated direct binding of RIP140 by 14-3-3 that recruited protein arginine methyl transferase 1 to methylate RIP140. The methylated RIP140 then preferentially recruited exportin 1 for nuclear export. As a result, the nuclear gene-repressive activity of RIP140 was reduced. In RIP140 null adipocyte cultures, the defect in fat accumulation was effectively rescued by the phosphorylation-deficient mutant RIP140 that resided predominantly in the nucleus, but less so by the phospho-mimetic RIP140 that was exported to the cytoplasm.This study uncovers a novel means, via a cascade of protein modifications, to inactivate, or suppress, the nuclear action of an important transcription coregulator RIP140, and delineates the first specific phosphorylation-arginine methylation cascade that could alter protein subcellular distribution and biological activity
Absence of RIP140 Reveals a Pathway Regulating glut4-Dependent Glucose Uptake in Oxidative Skeletal Muscle through UCP1-Mediated Activation of AMPK
Skeletal muscle constitutes the major site of glucose uptake leading to increased removal of glucose from the circulation in response to insulin. Type 2 diabetes and obesity are often associated with insulin resistance that can be counteracted by exercise or the use of drugs increasing the relative proportion of oxidative fibers. RIP140 is a transcriptional coregulator with a central role in metabolic tissues and we tested the effect of modulating its level of expression on muscle glucose and lipid metabolism in two mice models. Here, we show that although RIP140 protein is expressed at the same level in both oxidative and glycolytic muscles, it inhibits both fatty acid and glucose utilization in a fiber-type dependent manner. In RIP140-null mice, fatty acid utilization increases in the extensor digitorum longus and this is associated with elevated expression of genes implicated in fatty acid binding and transport. In the RIP140-null soleus, depletion of RIP140 leads to increased GLUT4 trafficking and glucose uptake with no change in Akt activity. AMPK phosphorylation/activity is inhibited in the soleus of RIP140 transgenic mice and increased in RIP140-null soleus. This is associated with increased UCP1 expression and mitochondrial uncoupling revealing the existence of a signaling pathway controlling insulin-independent glucose uptake in the soleus of RIP140-null mice. In conclusion, our findings reinforce the participation of RIP140 in the maintenance of energy homeostasis by acting as an inhibitor of energy production and particularly point to RIP140 as a promising therapeutic target in the treatment of insulin resistance
Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay.
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors controlling the expression of genes involved in lipid homeostasis. PPARs activate gene transcription in response to a variety of compounds including hypolipidemic drugs as well as natural fatty acids. From the plethora of PPAR activators, Scatchard analysis of receptor-ligand interactions has thus far identified only four ligands. These are the chemotactic agent leukotriene B4 and the hypolipidemic drug Wy 14,643 for the alpha-subtype and a prostaglandin J2 metabolite and synthetic antidiabetic thiazolidinediones for the gamma-subtype. Based on the hypothesis that ligand binding to PPAR would induce interactions of the receptor with transcriptional coactivators, we have developed a novel ligand sensor assay, termed coactivator-dependent receptor ligand assay (CARLA). With CARLA we have screened several natural and synthetic candidate ligands and have identified naturally occurring fatty acids and metabolites as well as hypolipidemic drugs as bona fide ligands of the three PPAR subtypes from Xenopus laevis. Our results suggest that PPARs, by their ability to interact with a number of structurally diverse compounds, have acquired unique ligand-binding properties among the superfamily of nuclear receptors that are compatible with their biological activity
Molecular basis of agonism and antagonism in the oestrogen receptor.
Oestrogens are involved in the growth, development and homeostasis of a number of tissues. The physiological effects of these steroids are mediated by a ligand-inducible nuclear transcription factor, the oestrogen receptor (ER). Hormone binding to the ligand-binding domain (LBD) of the ER initiates a series of molecular events culminating in the activation or repression of target genes. Transcriptional regulation arises from the direct interaction of the ER with components of the cellular transcription machinery. Here we report the crystal structures of the LBD of ER in complex with the endogenous oestrogen, 17beta-oestradiol, and the selective antagonist raloxifene, at resolutions of 3.1 and 2.6 A, respectively. The structures provide a molecular basis for the distinctive pharmacophore of the ER and its catholic binding properties. Agonist and antagonist bind at the same site within the core of the LBD but demonstrate different binding modes. In addition, each class of ligand induces a distinct conformation in the transactivation domain of the LBD, providing structural evidence of the mechanism of antagonism
Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation
Receptor interacting protein 140 (RIP140), a ligand-dependent corepressor for nuclear receptors, can be modified by arginine methylation. Three methylated arginine residues, at Arg-240, Arg-650, and Arg-948, were identified by mass spectrometric analysis. Site-directed mutagenesis studies demonstrated the functionality of these arginine residues. The biological activity of RIP140 was suppressed by protein arginine methyltransferase 1 (PRMT1) due to RIP140 methylation, which reduced the recruitment of histone deacetylases to RIP140 and facilitated its nuclear export by enhancing interaction with exportin 1. A constitutive negative (Arg/Ala) mutant of RIP140 was resistant to the effect of PRMT1, and a constitutive positive (Arg/Phe) mutation mimicked the effect of arginine methylation. The biological activities of the wild type and the mutant proteins were examined in RIP140-null MEF cells. This study uncovered a novel means to inactivate, or suppress, RIP140, and demonstrated protein arginine methylation as a critical type of modification for corepressor