70 research outputs found

    Contrasted Saharan dust events in LNLC environments: impact on nutrient dynamics and primary production

    Get PDF
    The response of the phytoplanktonic community (primary production and algal biomass) to contrasted Saharan dust events (wet and dry deposition) was studied in the framework of the DUNE ("a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem") project. We simulated realistic dust deposition events (10 gm(-2)) into large mesocosms (52m(3)). Three distinct dust addition experiments were conducted in June 2008 (DUNE-1-P: simulation of a wet deposition; DUNE-1-Q: simulation of a dry deposition) and 2010 (DUNE-2-R1 and DUNE-2-R2: simulation of two successive wet depositions) in the northwestern oligotrophic Mediterranean Sea. No changes in primary production (PP) and chlorophyll a concentrations (Chl a) were observed after a dry deposition event, while a wet deposition event resulted in a rapid (24 h after dust addition), strong (up to 2.4-fold) and long (at least a week in duration) increase in PP and Chl a. We show that, in addition to being a source of dissolved inorganic phosphorus (DIP), simulated wet deposition events were also a significant source of nitrate (NO3-) (net increases up to +9.8 mu M NO3- at 0.1m in depth) to the nutrient-depleted surface waters, due to cloud processes and mixing with anthropogenic species such as HNO3. The dry deposition event was shown to be a negligible source of NO3-. By transiently increasing DIP and NO3- concentrations in N-P starved surface waters, wet deposition of Saharan dust was able to relieve the potential N or NP co-limitation of the phytoplanktonic activity. Due to the higher input of NO3- relative to DIP, and taking into account the stimulation of the biological activity, a wet deposition event resulted in a strong increase in the NO3-/DIP ratio, from initially less than 6, to over 150 at the end of the DUNE-2-R1 experiment, suggesting a switch from an initial N or NP co-limitation towards a severe P limitation. We also show that the contribution of new production to PP strongly increased after wet dust deposition events, from initially 15% to 60-70% 24 h after seeding, indicating a switch from a regenerated-production based system to a new-production based system. DUNE experiments show that wet and dry dust deposition events induce contrasting responses of the phytoplanktonic community due to differences in the atmospheric supply of bioavailable new nutrients. Our results from original mesocosm experiments demonstrate that atmospheric dust wet deposition greatly influences primary productivity and algal biomass in LNLC environments through changes in the nutrient stocks, and alters the NO3-/DIP ratio, leading to a switch in the nutrient limitation of the phytoplanktonic activity

    Contrasted Saharan dust events in LNLC environments: impact on nutrient dynamics and primary production

    Get PDF
    International audienceThe response of the phytoplanktonic community (primary production and algal biomass) to contrasted Sa-haran dust events (wet and dry deposition) was studied in the framework of the DUNE ("a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem") project. We simu-lated realistic dust deposition events (10 g m −2) into large mesocosms (52 m 3). Three distinct dust addition experiments were conducted in June 2008 (DUNE-1-P: simulation of a wet deposition; DUNE-1-Q: simulation of a dry deposition) and 2010 (DUNE-2-R1 and DUNE-2-R2: simulation of two successive wet depositions) in the northwestern oligotrophic Mediterranean Sea. No changes in primary production (PP) and chlorophyll a concentrations (Chl a) were observed after a dry deposition event, while a wet deposition event resulted in a rapid (24 h after dust addition), strong (up to 2.4-fold) and long (at least a week in duration) increase in PP and Chl a. We show that, in addition to being a source of dis-solved inorganic phosphorus (DIP), simulated wet deposition events were also a significant source of nitrate (NO − 3) (net in-creases up to +9.8 ”M NO − 3 at 0.1 m in depth) to the nutrient-depleted surface waters, due to cloud processes and mixing with anthropogenic species such as HNO 3 . The dry deposi-tion event was shown to be a negligible source of NO − 3 . By transiently increasing DIP and NO − 3 concentrations in N–P starved surface waters, wet deposition of Saharan dust was able to relieve the potential N or NP co-limitation of the phy-toplanktonic activity. Due to the higher input of NO − 3 relative to DIP, and taking into account the stimulation of the bio-logical activity, a wet deposition event resulted in a strong increase in the NO − 3 /DIP ratio, from initially less than 6, to over 150 at the end of the DUNE-2-R1 experiment, suggest-ing a switch from an initial N or NP co-limitation towards a severe P limitation. We also show that the contribution of new production to PP strongly increased after wet dust de-position events, from initially 15 % to 60–70 % 24 h after seeding, indicating a switch from a regenerated-production based system to a new-production based system. DUNE ex-periments show that wet and dry dust deposition events in-duce contrasting responses of the phytoplanktonic commu-nity due to differences in the atmospheric supply of bioavail-able new nutrients. Our results from original mesocosm ex-periments demonstrate that atmospheric dust wet deposition Published by Copernicus Publications on behalf of the European Geosciences Union. 4784 C. Ridame et al.: Phytoplanktonic response to Saharan dust events greatly influences primary productivity and algal biomass in LNLC environments through changes in the nutrient stocks, and alters the NO − 3 /DIP ratio, leading to a switch in the nu-trient limitation of the phytoplanktonic activity

    Mesoscale subduction at the Almeria-Oran front. Part 2: biophysical interactions.

    Get PDF
    This paper presents a detailed diagnostic analysis of hydrographic and current meter data from three, rapidly repeated, fine-scale surveys of the Almeria–Oran front. Instability of the frontal boundary, between surface waters of Atlantic and Mediterranean origin, is shown to provide a mechanism for significant heat transfer from the surface layers to the deep ocean in winter. The data were collected during the second observational phase of the EU funded OMEGA project on RRS Discovery cruise 224 during December 1996. High resolution hydrographic measurements using the towed undulating CTD vehicle, SeaSoar, traced the subduction of Mediterranean Surface Water across the Almeria–Oran front. This subduction is shown to result from a significant baroclinic component to the instability of the frontal jet. The Q-vector formulation of the omega equation is combined with a scale analysis to quantitatively diagnose vertical transport resulting from mesoscale ageostrophic circulation. The analyses are presented and discussed in the presence of satellite and airborne remotely sensed data; which provide the basis for a thorough and novel approach to the determination of observational error

    Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon)

    Get PDF
    International audienceIn the oligotrophic ocean characterized by nitrate (NO − 3) depletion in surface waters, dinitrogen (N 2) fixation and dissolved organic nitrogen (DON) can represent significant nitrogen (N) sources for the ecosystem. In this study, we deployed large in situ mesocosms in New Caledonia in order to investigate (1) the contribution of N 2 fixation and DON use to primary production (PP) and particle export and (2) the fate of the freshly produced particulate organic N (PON), i.e., whether it is preferentially accumulated and recycled in the water column or exported out of the system. The mesocosms were fertilized with phosphate (PO 3− 4) in order to prevent phosphorus (P) limitation and promote N 2 fixation. The diazotrophic community was dominated by diatom–diazotroph associations (DDAs) during the first part of the experiment for 10 days (P1) followed by the unicel-lular N 2-fixing cyanobacteria UCYN-C for the last 9 days (P2) of the experiment. N 2 fixation rates averaged 9.8 ± 4.0 and 27.7 ± 8.6 nmol L −1 d −1 during P1 and P2, respectively. NO − 3 concentrations ( 0.05) during P1 (9.0 ± 3.3 %) and P2 (12.6 ± 6.1 %). However, the e ratio that quantifies the efficiency of a system to export particulate organic carbon (POC export) compared to PP (e ratio = POC export / PP) was significantly higher (p 0.05) from the total amount of PON exported (0.10 ± 0.04 ”mol L −1), suggesting a rapid and probably direct export of the recently fixed N 2 by the DDAs. During P2, both PON concentrations and PON export increased in the mesocosms by a factor 1.5–2. Unlike in P1, this PON production was not totally explained by the new N provided by N 2 fixation. The use of DON, whose concentrations decreased significantly (p < 0.05) from 5.3 ± 0.5 ”mol L −1 to 4.4 ± 0.5 ”mol L −1 , appeared to be the missing N source. The DON consumption (∌ 0.9 ”mol L −1) during P2 is higher Published by Copernicus Publications on behalf of the European Geosciences Union. 4100 H. Berthelot et al.: Dinitrogen fixation and dissolved organic nitrogen fueled primary production than the total amount of new N brought by N 2 fixation (∌ 0.25 ”mol L −1) during the same period. These results suggest that while DDAs mainly rely on N 2 fixation for their N requirements, both N 2 fixation and DON can be significant N sources for primary production and particulate export following UCYN-C blooms in the New Caledonia lagoon and by extension in the N-limited oceans where similar events are likely to occur

    Role of small Rhizaria and diatoms in the pelagic silica production of the Sourther Ocean

    Get PDF
    We examined biogenic silica production and elementary composition (biogenic Si, particulate organic carbon and particulate organic nitrogen) of Rhizaria and diatoms in the upper 200 m along a transect in the Southwest Pacific sector of the Southern Ocean during austral summer (January–February 2019). From incubations using the 32Si radioisotope, silicic acid uptake rates were measured at 15 stations distributed in the Polar Front Zone, the Southern Antarctic Circumpolar Current and the Ross Sea Gyre. Rhizaria cells are heavily silicified (up to 7.6 nmol Si cell−1), displaying higher biogenic Si content than similar size specimens found in other areas of the global ocean, suggesting a higher degree of silicification of these organisms in the silicic acid rich Southern Ocean. Despite their high biogenic Si and carbon content, the Si/C molar ratio (average of 0.05 ± 0.03) is quite low compared to that of diatoms and relatively constant regardless of the environmental conditions. The direct measurements of Rhizaria's biogenic Si production (0.8–36.8 Όmol Si m−2 d−1) are of the same order of magnitude than previous indirect estimations, confirming the importance of the Southern Ocean for the global Rhizaria silica production. However, diatoms largely dominated the biogenic Si standing stock and production of the euphotic layer, with low rhizarians' abundances and biogenic Si production (no more than 1%). In this manuscript, we discuss the Antarctic paradox of Rhizaria, that is, the potential high accumulation rates of biogenic Si due to Rhizaria in siliceous sediments despite their low production rates in surface waters.VersiĂłn del editor3,38

    Seasonality and spatial heterogeneity of the surface ocean carbonate system in the northwest European continental shelf

    Get PDF
    In 2014–5 the UK NERC sponsored an 18 month long Shelf Sea Biogeochemistry research programme which collected over 1500 nutrient and carbonate system samples across the NW European Continental shelf, one of the largest continental shelves on the planet. This involved the cooperation of 10 different Institutes and Universities, using 6 different vessels. Additional carbon dioxide (CO2) data were obtained from the underway systems on three of the research vessels. Here, we present and discuss these data across 9 ecohydrodynamic regions, adapted from those used by the EU Marine Strategy Framework Directive (MSFD). We observed strong seasonal and regional variability in carbonate chemistry around the shelf in relation to nutrient biogeochemistry. Whilst salinity increased (and alkalinity decreased) out from the near-shore coastal waters offshore throughout the year nutrient concentrations varied with season. Spatial and seasonal variations in the ratio of DIC to nitrate concentration were seen that could impact carbon cycling. A decrease in nutrient concentrations and a pronounced under-saturation of surface pCO2 was evident in the spring in most regions, especially in the Celtic Sea. This decrease was less pronounced in Liverpool Bay and to the North of Scotland, where nutrient concentrations remained measurable throughout the year. The near-shore and relatively shallow ecosystems such as the eastern English Channel and southern North Sea were associated with a thermally driven increase in pCO2 to above atmospheric levels in summer and an associated decrease in pH. Non-thermal processes (such as mixing and the remineralisation of organic material) dominated in winter in most regions but especially in the northwest of Scotland and in Liverpool Bay. The large database collected will improve understanding of carbonate chemistry over the North-Western European Shelf in relation to nutrient biogeochemistry, particularly in the context of climate change and ocean acidification

    NITROGEN-SOURCE FOR UPTAKE BY GYRODINIUM CF AUREOLUM IN A TIDAL FRONT

    No full text
    International audienceMeasurements of ammonium and nitrate uptake by a Gyrodinium bloom in the Ushant frontal region showed that ammonium is the preferred form and its assimilation provides 90% of the N required. Uptake (3.75 mmol m-2 h-1) and regeneration (3.41 mmol m-2 h-1) of ammonium were tightly coupled. Regenerative flux of ammonium was through a microbial loop of bacteria, nanoflagellates, and ciliates in the size fraction < 30 mum. Comparison of the conditions before and after the bloom formation, and a mass balance of N, shows that the G. aureolum bloom in the frontal region can be maintained almost exclusively by in situ remineralization of remnants of previous diatom blooms
    • 

    corecore