3 research outputs found

    Association between Neonatal Whole Blood Iron Content and Cytokines, Adipokines, and Other Immune Response Proteins

    Get PDF
    (1) Background: High iron associates with inflammation and type 1 diabetes (T1D). Iron is essential not only for neonatal development but also for infectious microorganisms. The neonatal immune system is immature, and innate immunity prevails before immunocompetence develops. (2) Methods: In 398 newborns from the Danish Newborn Screening Biobank, we examined if whole blood iron (WB-Iron) content were associated with cytokines, adipokines, C-reactive protein (CRP), and mannose-binding lectin (MBL) in non-infected healthy neonates, and if these associations differed in newborns who later developed T1D (cases) (n = 199). WB-Iron was quantified using laser ablation inductively coupled plasma mass spectrometry on the neonatal dried blood spots. For each analyte, the relative change (RC) in the mean level was modeled by robust log-normal regression. (3) Results: A one unit increase in neonatal WB-Iron was associated with a 38% decrease in mean interleukin (IL)-6 levels (0.62; 95% CI: 0.40–0.95, p = 0.03), and a 37% decrease in mean MBL levels (0.63; 95% CI: 0.41–0.95, p = 0.03), but was not statistically significant after correction for multiple testing. (4) Conclusions: In summary, we found that higher neonatal WB-iron content was inversely associated with IL-6 and MBL, which may increase susceptibility to infections

    Potential beneficial effects of a gluten-free diet in newly diagnosed children with type 1 diabetes:a pilot study

    Get PDF
    AIM: Gluten-free diet has shown promising effects in preventing type 1 diabetes (T1D) in animals as well as beneficial effects on the immune system. Gluten-free diet at diabetes onset may alter the natural course and outcome of autoimmune diseases such as T1D. METHODS: In a 12-month study, 15 children newly diagnosed with T1D were instructed to follow a gluten-free diet. Questionnaires were used to evaluate adherence to the gluten-free diet. Partial remission (PR) was defined by insulin dose-adjusted A1c (IDAA1c) ≤9 or stimulated C-peptide (SCP) >300 pmol/L measured 90 min after a liquid mixed meal at the inclusion, six and 12 months after onset. The intervention group was compared with two previous cohorts. Linear mixed models were used to estimate differences between cohorts. RESULTS: After 6 months, more children on a gluten-free diet tended to have SCP values above 300 pmol/L compared to the European cohort (p = 0.08). The adherence to a gluten-free diet decreased during the 12-month study period. After 1 year there was no difference in SCP levels or percentage in remission according to SCP (p > 0.1). Three times as many children were still in PR based on IDAA1c (p < 0.05). Twelve months after onset HbA1c were 21 % lower and IDAA1c >1 unit lower in the cohort on a gluten-free diet compared to the two previous cohorts (p < 0.001). CONCLUSION: Gluten-free diet is feasible in highly motivated families and is associated with a significantly better outcome as assessed by HbA1c and IDAA1c. This finding needs confirmation in a randomized trial including screening for quality of life. (Clinicaltrials.gov number NCT02284815)
    corecore