2,981 research outputs found
Bacterial community analysis in upflow multilayer anaerobic reactor (UMAR) treating high-solids organic wastes
A novel anaerobic digestion configuration, the upflow multi-layer anaerobic reactor (UMAR), was developed to treat high-solids organic wastes. The UMAR was hypothesized to form multi-layer along depth due to the upflow plug flow; use of a recirculation system and a rotating distributor and baffles aimed to assist treating high-solids influent. The chemical oxygen demand (COD) removal efficiency and methane (CH4) production rate were 89% and 2.10 L CH4/L/day, respectively, at the peak influent COD concentration (110.4 g/L) and organic loading rate (7.5 g COD/L/day). The 454 pyrosequencing results clearly indicated heterogeneous distribution of bacterial communities at different vertical locations (upper, middle, and bottom) of the UMAR. Firmicutes was the dominant (>70%) phylum at the middle and bottom parts, while Deltaproteobacteria and Chloroflexi were only found in the upper part. Potential functions of the bacteria were discussed to speculate on their roles in the anaerobic performance of the UMAR system
User Analysis Mechanisms based Mobile Fitness System
Modern men have health problems caused by lack of exercise than in the past. But most modern people do not know what to do exercise. Mobile systems for fitness to solve this problem have been developed. In this paper, by analyzing the user's BMI (Body Mass Index) Index and BMR (Basal Metabolic Rate) value, the data is made available. The processed data is provided to the user which proposes the right exercise and the appropriate level of exercise intensity, for exercise machines. This is different from detecting the movement, like the existing system, and a fitness value showing the calorie consumption caused. Thus the user is considered to be able to efficiently proceed to a movement based on the provided data
Mehanizam akutne neurotoksičnosti u Sprague-Dawley štakora izazvane trovanjem endosulfanom
The purpose of this study was to investigate the molecular mechanism underlying oxidative and inflammatory neuronal cell death induced by endosulfan, a pesticide belonging to the chemical family of organochlorines. The cortical and hippocampal tissues derived from Sprague-Dawley (SD) rats treated with endosulfan exhibited increased intracellular accumulation of reactive oxygen species and oxidative damages to cellular macromolecules such as depletion of glutathione, lipid peroxidation, and protein carbonylation. Conversely, the expression of antioxidant enzymes including γ-glutamylcysteine ligase (GCL), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) was markedly reduced in the brain tissues exposed to endosulfan. Moreover, during endosulfan-induced neuronal cell death, mRNA expression of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was elevated, which seemed to be mediated by the activation of nuclear factor-kappa B (NF-κB) by phosphorylation of p65 subunit. These results suggest a new molecular mechanism underlying the endosulfan-induced acute neurotoxicity via induction of oxidative stress and pro-inflammatory responses.Istražen je molekularni mehanizam koji dovodi do smrti neurona potaknute oksidativnim i upalnim procesima uzrokovanim organoklornim pesticidom endosulfanom. U tkivima korteksa i hipokampusa Sprague-Dawley (SD) štakora tretiranih endosulfanom uočena su oksidativna oštećenja staničnih makromolekula, poput smanjene razine glutationa, lipidne peroksidacije i karbonilacije proteina, te povećane unutarstanične akumulacije reaktivnih kisikovih spojeva. Isto tako, u moždanom tkivu nakon izlaganja endosulfanu značajno je smanjena ekspresija enzimskih antioksidansa, uključujući i γ-glutamilcistein ligazu (GCL), superoksidnu dismutazu (SOD) i hem oksigenazu-1 (HO-1). Tijekom endosulfanom izazvane smrti neurona povećala se i ekspresija mRNA pro-upalnih citokina poput čimbenika nekroze tumora-α (TNF-α) i interleukina-1β (IL-1β), što je čini se bilo posredovano aktivacijom nuklearnoga faktora kapa B (NF-κB) putem fosforilacije podjedinice p65. Navedeni rezultati upućuju na novi molekularni mehanizam koji stoji iza akutne neurotoksičnosti izazvane endosulfanom putem indukcije oksidativnoga stresa i pro-upalnih odgovora
REX-1 Expression and p38 MAPK Activation Status Can Determine Proliferation/Differentiation Fates in Human Mesenchymal Stem Cells
BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC) marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs) isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs) and adipose tissue-derived MSCs (hAD-MSCs) strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs) have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA). After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP) assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs). These results were the first to show the role of REX1 in the proliferation/differentiation of ASCs
Influence of Mg Deficiency on the Superconductivity in MgB2 Thin Films Grown by using HPCVD
The effects of Mg deficiency in MgB2 films grown by using hybrid
physical-chemical vapor deposition were investigated after vacuum annealing at
various temperatures. High-quality MgB2 films grown on c-cut Al2O3 substrates
with different superconducting transition temperatures (Tc) of 40.2 and 41 K
were used in this study. As the annealing temperature was increased from 200 to
800 C, the Mg contents in the MgB2 films systemically decreased, but the Tc's
did not change, within 0.12 K, until the annealing temperature reached 700 C.
For MgB2 films annealed at 800 C for 30 min, however, no superconductivity was
observed, and the temperature dependence of the resistivity showed a
semiconducting behavior. We also found that the residual resistivity ratio
decreased with increasing annealing temperature.Comment: 7 pages including 4 figure
Superior Place Learning of C57BL/6 vs. DBA/2 Mice Following Prior Cued Learning in the Water Maze Depends on Prefrontal Cortical Subregions
The participation of the prefrontal cortex (PFC), hippocampus, and dorsal striatum in switching the learning task from cued to place learning were examined in C57BL/6 and DBA/2 mice, by assessing changed levels of phosphorylated CREB (pCREB). Mice of both strains first received cued training in a water maze for 4 days (4 trials per day), and were then assigned to one of four groups, one with no place training, and three with different durations of place training (2, 4, or 8 days). Both strains showed equal performance in cued training. After the switch to place training, C57BL/6 mice with 2 or 4 days of training performed significantly better than DBA/2 mice, but their superiority disappeared during the second half of an 8 days-place training period. The pCREB levels of these mice were measured 30 min after place training and compared with those of mice that received only cued training. Changes in pCREB levels of C57BL/6 mice were greater in the hippocampal CA3, hippocampal dentate gyrus, orbitofrontal and medial PFC than those of DBA/2 mice, when mice of both received the switched place training for 2 days. We further investigated the roles of orbitofrontal and medial PFC among these brain regions showing strain differences, by destroying each region using selective neurotoxins. C57BL/6 mice with orbitofrontal lesions were slower to acquire the place learning and continued to use the cued search acquired during the cued training phase. These findings indicate that mouse orbitofrontal cortex (OFC) pCREB is associated with behavioral flexibility such as the ability to switch a learning task
A Standalone Vision Sensing System for Pseudodynamic Testing of Tuned Liquid Column Dampers
Experimental investigation of the tuned liquid column damper (TLCD) is a primal factory task prior to its installation at a site and is mainly undertaken by a pseudodynamic test. In this study, a noncontact standalone vision sensing system is developed to replace a series of the conventional sensors installed at the TLCD tested. The fast vision sensing system is based on binary pixel counting of the portion of images steamed in a pseudodynamic test and achieves near real-time measurements of wave height, lateral motion, and control force of the TLCD. The versatile measurements of the system are theoretically and experimentally evaluated through a wide range of lab scale dynamic tests
- …