448 research outputs found

    Carnosol induces apoptotic cell death through ROS-dependent inactivation of STAT3 in human melanoma G361 cells

    Get PDF
    Melanoma is the leading cause of skin cancer deaths, and the poor prognosis of metastatic melanoma has made needs for a novel pharmacological treatment or efficient intervention. Carnosol, a major polyphenolic compound from Rosmarinus officinalis, has a wide range of biological activities including anti-cancer effect. However, the underlying molecular mechanisms of its anti-cancer effect remain poorly understood in malignant human melanoma cells. In the present study, we investigate the apoptotic effect and the underlying anti-cancer mechanisms of carnosol. Our results revealed that carnosol strongly induced apoptosis against human melanoma G361 cells in a dose- and time-dependent manner, and caused dramatical elevation in cellular reactive oxygen species (ROS) level during apoptosis. In mechanistic studies, carnosol treatment decreased protein level of anti-apoptotic B‑cell lymphoma 2 (Bcl-2) and B cell lymphoma-extra large (Bcl-xL), however, increased level of pro-apoptotic Bcl-2-associated X protein (Bax) protein. Moreover, carnosol escalated cellular level of p53, which was accompanied by a decline of mouse double minute 2 homolog (MDM2) level. Also, carnosol inhibited activation of Src and signal transducer and activator of transcription 3 (STAT3), therefore down-regulated STAT3-dependent gene expression, such as D-series cyclin and survivin. These changes by carnosol were attenuated by pre-treatment of N-acetyl cysteine, and abolished progression of carnosol-induced apoptosis. In conclusion, carnosol induced apoptosis in human melanoma G361 cells through ROS generation and inhibition of STAT3-mediated pathway. Our results provide molecular bases of carnosol-induced apoptosis, and suggest a novel candidate for human melanoma treatment.This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1A02050495, J.-S. Choi) and by the Ministry of Science, ICT and Future Planning 2017R1A2B4009831, K.- S. Chun)

    The Impacts of Role Overload and Role Conflict on Physicians\u27 Technology Adoption

    Get PDF
    Technology adoption is an important solution for physicians to increase work efficiency, and thus deal with role conflict among their multiple job roles. Prior studies have not investigated how multiple job roles and role conflict influence physicians’ technology adoption intentions. Based on role strain theory and role identity theory, we present a model of physicians’ technology adoption intentions to support their primary (clinical care) versus secondary (teaching or research) job roles. We test the model using surveys with 156 physicians at nine medical schools in Korea. The results of our data analysis largely support our hypotheses. Role overload in each of their job roles increases role conflict between any pair of associated roles. Furthermore, role conflict between a physician’s primary and secondary role is affected more by role overload in the secondary role than by overload in the primary role. Moreover, the impact of role conflict on technology adoption intentions is also influenced by the hierarchical relationship between two roles. This study contributes to technology adoption research by demonstrating how physicians’ job characteristics affect technology adoption

    Bax-dependent apoptosis induced by ceramide in HL-60 cells

    Get PDF
    AbstractCeramide is an important lipid messenger involved in mediating a variety of cell functions including apoptosis. In this study, we show that antisense bax inhibits cytochrome c release, poly(ADP-ribose)polymerase cleavage and cell death induced by ceramide in HL-60 cells. In addition, ceramide induces translocation of Bax to mitochondria. The addition of the broad spectrum caspase inhibitor zVAD-fmk prevented ceramide-induced apoptotic cell death but did not inhibit translocation of Bax and mitochondrial cytochrome c release. Furthermore, ceramide inhibits the expression of the antiapoptotic protein Bcl-xL with an increase in the ratio of Bax to Bcl-xL. These data provide direct evidence that Bax plays an important role in regulating ceramide-induced apoptosis

    Investigation of Enhanced Polygon Wall Boundary Model in PNU-MPS Method

    Get PDF
    With regard to demonstration of fluid flow, there are two descriptions which are Eulerian description and Lagrangian description. In the field of CFD (Computational Fluid Dynamics), a number of studies relevant to grid method based on Eulerian description have been conducted generally. However, when the grid method is employed to simulate flow field, it is inevitable to give consideration to convection term which generates severe numerical diffusion and fluctuation. To obtain the accuracy of solution, a different type of method based on Lagrangian description is come to the fore. Numerical approaches following Lagrangian description have been called meshfree or particle method. Even though particle method does not accompany convection term and fully satisfies conservation of mass, its studies have not been carried out extensively because it is difficult to implement the boundary conditions correctly due to insufficient number of particles in the vicinity of boundary. It affects directly the stability of flow field and accuracy in computation. In MPS (Moving Particle Semi-implicit) method [1], fixed-type of dummy particles are placed inside wall boundary. By placing extra particles as the wall, it seems to be not easy to satisfy the boundary condition for sharp-edged or extremely thin body configuration. In this study, the enhanced polygon wall boundary model, which was suggested originally by Mitsume et al. [2], is employed to the PNU-MPS (Pusan-National-University-modified MPS) method [3] to improve and stabilize the analysis of fluid flow with arbitrary-shaped body including sharp-edged body configuration without any additional particles. The developed simulation method, called as PNU-MPS-POLY, is adopted to the Couette flow and the lid-driven cavity flow with various corner angles. The present simulation results are validated through comparison with the analytic solutions, the experiments [4], and other simulation results [5,6]

    Preventive effects of Korean red ginseng on experimentally induced colitis and colon carcinogenesis

    Get PDF
    © 2020 Center for Food and Biomolecules, National Taiwan UniversityKorean Red Ginseng (KRG) exerts chemopreventive effects on experimentally induced carcinogenesis through multiple mechanisms. In this study, we investigated effects of KRG on dextran sulfate sodium (DSS)-induced colitis and azoxymethane (AOM) plus DSS-induced colon carcinogenesis in mice. Male C57BL/6J mice were fed diet containing 1% KRG or a standard diet throughout the experiment. The mouse colitis was induced by administration of 3% DSS in drinking water for 1 week. DSS caused body weight loss, diarrhea, rectal bleeding and colon length shortening, and all these symptoms were ameliorated by KRG treatment. KRG inhibited DSS-induced expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) by suppressing activation of nuclear factor-kappa B (NF-ÎșB) and signal transducer and activation of transcription 3 (STAT3). In another experiment, colon carcinogenesis was initiated by single intraperitoneal injection of AOM (10 mg/kg) and promoted by 2% DSS in drinking water. KRG administration relieved the symptoms of colitis and reduced the incidence, the multiplicity and the size of colon tumor. The up-regulation of COX-2, iNOS, c-Myc and Cyclin D1 by AOM plus DSS was attenuated in KRG fed mice which was associated with suppression of NF-ÎșB and STAT3 activation. These results suggest that KRG is a potential candidate for chemoprevention of inflammation-associated cancer in the colon.

    Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification

    Get PDF
    The present study was aimed to investigate the effects of curcumin, a representative chemopreventive phytochemical with pronounced antioxidant and anti-inflammatory properties, on activation of Nrf2 and expression of its target protein heme oxygenase-1 (HO-1) in mouse skin in vivo and in cultured murine epidermal cells. Treatment of mouse epidermal JB6 cells with curcumin resulted in the induction of HO-1 expression, and this was abrogated in cells transiently transfected with Nrf2 siRNA. While curcumin treatment increased protein expression of Nrf2, it did not alter the steady-state level of the Nrf2 mRNA transcript. Treatment of cells with curcumin stabilized Nrf2 by inhibiting ubiquitination and subsequent 26S proteasomal degradation of this transcription factor. Tetrahydrocurcumin, a non-electrophilic analogue of curcumin that lacks the alpha,beta-unsaturated carbonyl group, failed to induce HO-1 expression as well as nuclear translocation of Nrf2 and its binding to the antioxidant/electrophile response elements. Cells transfected with a mutant Keap1 protein in which cysteine 151 (Cys151) is replaced by serine exhibited marked reduction in curcumin-induced Nrf2 transactivation. Mass spectrometric analysis revealed that curcumin binds to Keap1 Cys151, supporting that this amino acid is a critical target for curcumin modification of Keap1, which facilitates the liberation of Nrf2. Thus, it is likely that the alpha,beta-unsaturated carbonyl moiety of curcumin is essential for its binding to Keap1 and stabilization of Nrf2 by hampering ubiquitination and proteasomal degradation.

    Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein

    Get PDF
    BACKGROUND: Heptaplatin is a new platinum derivative with anticancer activity against various cancer cell lines, including cisplatin-resistant cancer cell lines (Cancer Chemother Pharmacol 1995; 35: 441). METHODS: Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines has been investigated in connection with metallothionein (MT). Cytotoxicity was determined by an MTT assay. MT mRNA, was determined by RT-PCR assay. Transfection study was carried out to examine the function of MT. RESULTS: Of various gastric cancer cell lines, SNU-638 and SNU-601 showed the highest and lowest levels of MT mRNA, respectively, showing 80-fold difference. The IC(50 )values of SNU-638 to cisplatin, carboplatin and heptaplatin were 11.2-fold, 5.1-fold and 2.0-fold greater than those of SNU-601, respectively. Heptaplatin was more effective against cisplatin-resistant and MT-transfected gastric cancer sublines than cisplatin or carboplatin was. In addition, heptaplatin attenuated cadmium, but not zinc, induction of MT. CONCLUSION: These results indicate that molecular mechanisms of heptaplatin effective against cisplatin-resistant gastric cancer sublines is at least in part due to the less involvement of MT in heptaplatin resistance as well as its attenuation of MT induction
    • 

    corecore