2,857 research outputs found

    Soybeans Ameliolate Diabetic Nephropathy in Rats

    Get PDF
    Diabetic nephropathy is one of the most frequent and serious complications of diabetes mellitus. Soybeans have been shown to reduce urinary albumin excretion and total cholesterol in non-diabetic patients with nephrotic syndrome. However, reports focusing specifically on diabetic nephropathy are scarce and the available results are inconsistent. It was reported that soybean consumption reduced urinary protein excretion in type 1 diabetic patients with diabetic nephropathy, whereas it was found to elicit an increase in urinary protein excretion when soybeans were consumed by type 2 diabetic patients. This study aims to investigate the effects of soybean in diabetic nephropathy, particularly the effects of consuming soybeans on the histopathology of diabetic nephropathy, using aquaporin (AQP) and osteopontin (OPN) expression as diagnostic markers. Male Sprague-Dawley rats were assigned to one of three groups: control, diabetic with red chow diet and diabetic with soybean diet. For histological examination, the expression of OPN and AQP, renal function and hemoglobin A1c were evaluated at the end of the study. Improvements in glomerular and tubulointerstitial lesions were demonstrated in the diabetic rat group given a soybean diet. OPN and AQP expression were suppressed in the kidney specimens of diabetic rats with the soybean diet. In conclusion, soybeans may prevent the weight loss and morphological disruption of the kidney associated with diabetes mellitus. Soybeans also may improve glycemic control. It seems likely that long-term control of blood glucose levels using a soybean diet could prevent the progression of diabetes mellitus, and therefore, nephropathy could be prevented

    Ferroportin disease mutations influence manganese accumulation and cytotoxicity

    Full text link
    Hemochromatosis is a frequent genetic disorder, characterized by the accumulation of excess iron across tissues. Mutations in the FPN1 gene, encoding a cell surface iron exporter [ferroportin (Fpn)], are responsible for hemochromatosis type 4, also known as ferroportin disease. Recently, Fpn has been implicated in the regulation of manganese (Mn), another essential nutrient required for numerous cellular enzymes. However, the roles of Fpn in Mn regulation remain ill‐defined, and the impact of disease mutations on cellular Mn levels is unknown. Here, we provide evidence that Fpn can export Mn from cells into extracellular space. Fpn seems to play protective roles in Mn‐induced cellular toxicity and oxidative stress. Finally, disease mutations interfere with the role of Fpn in controlling Mn levels as well as the stability of Fpn. These results define the function of Fpn as an exporter of both iron and Mn and highlight the potential involvement of Mn dysregulation in ferroportin disease.—Choi, E.‐K., Nguyen, T.‐T., Iwase, S., Seo, Y. A. Ferroportin disease mutations influence manganese accumulation and cytotoxicity. FASEB J. 33, 2228–2240 (2019). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154252/1/fsb2fj201800831r.pd

    Strain-induced delamination of edge-grafted graphite

    Get PDF
    Edge-selectively grafted graphite (EGG) with poly(ether-ketone) was prepared by the Friedel-Crafts acylation in a mild polyphosphoric acid (PPA)-phosphorous pentoxide (P2O5) mixture. The homogeneous reaction dope was coagulated in air moisture at different temperatures. The morphology of expanded EGG was changed from balls, balls/rods and rods with respect to coagulation temperatures of 80, 60, 40 and 25 degrees C, respectively.close1

    Prediction of Plaque Progression in Coronary Arteries Based on a Novel Hemodynamic Index Calculated From Virtual Stenosis Method

    Get PDF
    RationalePredicting the sites in coronary arteries that are susceptible to plaque deposition is essential for the development of clinical treatment strategies and prevention. However, to date, no physiological biomarkers for this purpose have been developed. We hypothesized that the possibility of plaque deposition at a specific site in the coronary artery is associated with wall shear stress (WSS) and fractional flow reserve (FFR).Background and ObjectiveWe proposed a new biomarker called the stenosis susceptibility index (SSI) using the FFR and WSS derived using virtual stenosis method. To validate the clinical efficacy of this index, we applied the method to actual pilot clinical cases. This index non-invasively quantifies the vasodilation effects of vascular endothelial cells relative to FFR variation at a specific coronary artery site.Methods and ResultsUsing virtual stenosis method, we computed maximum WSS and FFR according to the variation in stenotic severity at each potential stenotic site and then plotted the variations of maximum WSS (y-axis) and FFR (x-axis). The slope of the graph indicated a site-specific SSI value. Then we determined the most susceptible sites for plaque deposition by comparing SSI values between the potential sites. Applying this method to seven patients revealed 71.4% in per-patient basis analysis 77.8% accuracy in per-vessel basis analysis in percutaneous coronary intervention (PCI) site prediction.ConclusionThe SSI index can be used as a predictive biomarker to identify plaque deposition sites. Patients with relatively smaller SSI values also had a higher tendency for myocardial infarction. In conclusion, sites susceptible to plaque deposition can be identified using the SSI index
    corecore