3,074 research outputs found

    Interactive media server with media synchronized raid storage system

    Get PDF
    We propose an efficient placement algorithm and per-disk prefetching method to effectively support interactive operations in the media server. Our placement policy is incorporated with an encoder having a special bitcount control scheme that repeatedly tunes quantization parameters to adjust the bitcounts of video frames. This encoder can generate coded frames whose sizes are synchronized with the RAID stripe size, so that when various fast-forward levels are accessed we can reduce the seek and rotational latency and enhance the disk throughput of each disk in the RAID system. In the experimental results, the proposed placement policy and bitrate control scheme can significantly improve the average service time, which can enlarge the capacity of the interactive media server

    Isolation of p-hydroxycinnamaldehyde as an antibacterial substance from the saw fly, Acantholyda parki S.

    Get PDF
    AbstractWe purified an antibacterial substance from larvae of the saw fly, Acantholyda parki S., and identified its molecular structure as p-hydroxycinnamaldehyde. We then synthesized it by reduction of p-hydroxycinnamic acid. The antibacterial activity of the synthetic p-hydroxycinnamaldehyde was equal to that of the authentic substance. This molecule was found to have a broad antibacterial spectrum against not only Gram-negative, but also Gram-positive bacteria. Furthermore, it showed antifungal activity against Candida albicans. We suggest that this substance may play a role in the defense system of this insect. This is the first report of p-hydroxycinnamaldehyde of animal origin

    A Hybrid Approach Based on Variational Mode Decomposition for Analyzing and Predicting Urban Travel Speed

    Get PDF
    Predicting travel speeds on urban road networks is a challenging subject due to its uncertainty stemming from travel demand, geometric condition, traffic signals, and other exogenous factors. This uncertainty appears as nonlinearity, nonstationarity, and volatility in traffic data, and it also creates a spatiotemporal heterogeneity of link travel speed by interacting with neighbor links. In this study, we propose a hybrid model using variational mode decomposition (VMD) to investigate and mitigate the uncertainty of urban travel speeds. The VMD allows the travel speed data to be divided into orthogonal and oscillatory sub-signals, called modes. The regular components are extracted as the low-frequency modes, and the irregular components presenting uncertainty are transformed into a combination of modes, which is more predictable than the original uncertainty. For the prediction, the VMD decomposes the travel speed data into modes, and these modes are predicted and summed to represent the predicted travel speed. The evaluation results on urban road networks show that, the proposed hybrid model outperforms the benchmark models both in the congested and in the overall conditions. The improvement in performance increases significantly over specific link-days, which generally are hard to predict. To explain the significant variance of the prediction performance according to each link and each day, the correlation analysis between the properties of modes and the performance of the model are conducted. The results on correlation analysis show that the more variance of nondaily pattern is explained through the modes, the easier it was to predict the speed. Based on the results, discussions on the interpretation on the correlation analysis and future research are presented. Document type: Articl

    Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer

    Get PDF
    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the pn junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it. © 2012 Baek et al.1

    Measurement of SUVs-Maximum for Normal Region Using VOI in PET/MRI and PET/CT

    Get PDF
    The purpose of this research is to establish an overall data set associated with the VOI (Volume of Interest), which is available for simultaneous assessment of PET/MRI and PET/CT regardless of the use of contrast media. The participants as objects of this investigation are 26 healthy examinees in Korea, SUV (standardized-uptake-value)s-maximum evaluation for whole-body F-18 FDG (fluorodeoxyglucose) PET/MRI image using VOI of normal region has exhibited very significant difference to that for whole-body F-18 FDG PET/CT image (significant probability value (P)<0.0001). However, there appeared high correlation between them in view of statistics (R-square (R)>0.8). It is shown that one needs to decide SUVs-maximum for PET/MRI with the reduction of 25.0~26.4% from their evaluated value and needs to decide with the reduction of 28.8~29.4% in the same situation but with the use of contrast media. The use of SUVLBM-maximum (SUVLean Body Mass-maximum) is very advantageous in reading overall image of PET/CT and PET/MRI to medical doctors and researchers, if we consider its convenience and efficiency. We expect that this research enhances the level of the early stage accurate diagnosis with whole-body images of PET/MRI and PET/CT

    Homocysteine-induced peripheral microcirculation dysfunction in zebrafish and its attenuation by L-arginine

    Get PDF
    Elevated blood homocysteine (Hcy) level is frequently observed in aged individuals and those with age-related vascular diseases. However, its effect on peripheral microcirculation is still not fully understood. Using in vivo zebrafish model, the degree of Hcy-induced peripheral microcirculation dysfunction is assessed in this study with a proposed dimensionless velocity parameter (V) over bar (CV)/(V) over bar (PCV), where (V) over bar (CV) and (V) over bar (PCV) represent the peripheral microcirculation perfusion and the systemic perfusion levels, respectively. The ratio of the peripheral microcirculation perfusion to the systemic perfusion is largely decreased due to peripheral accumulation of neutrophils, while the systemic perfusion is relatively preserved by increased blood supply from subintestinal vein. Pretreatment with L-arginine attenuates the effects of Hcy on peripheral microcirculation and reduces the peripheral accumulation of neutrophils. Given its convenience, high reproducibility of the observation site, non-invasiveness, and the ease of drug treatment, the present zebrafish model with the proposed parameters will be used as a useful drug screening platform for investigating the pathophysiology of Hcy-induced microvascular diseases.111Ysciescopu
    corecore