1,167 research outputs found
Effects of a radiation dose reduction strategy for computed tomography in severely injured trauma patients in the emergency department: an observational study
<p>Abstract</p> <p>Background</p> <p>Severely injured trauma patients are exposed to clinically significant radiation doses from computed tomography (CT) imaging in the emergency department. Moreover, this radiation exposure is associated with an increased risk of cancer. The purpose of this study was to determine some effects of a radiation dose reduction strategy for CT in severely injured trauma patients in the emergency department.</p> <p>Methods</p> <p>We implemented the radiation dose reduction strategy in May 2009. A prospective observational study design was used to collect data from patients who met the inclusion criteria during this one year study (intervention group) from May 2009 to April 2010. The prospective data were compared with data collected retrospectively for one year prior to the implementation of the radiation dose reduction strategy (control group). By comparison of the cumulative effective dose and the number of CT examinations in the two groups, we evaluated effects of a radiation dose reduction strategy. All the patients met the institutional adult trauma team activation criteria. The radiation doses calculated by the CT scanner were converted to effective doses by multiplication by a conversion coefficient.</p> <p>Results</p> <p>A total of 118 patients were included in this study. Among them, 33 were admitted before May 2009 (control group), and 85 were admitted after May 2009 (intervention group). There were no significant differences between the two groups regarding baseline characteristics, such as injury severity and mortality. Additionally, there was no difference between the two groups in the mean number of total CT examinations per patient (4.8 vs. 4.5, respectively; p = 0.227). However, the mean effective dose of the total CT examinations per patient significantly decreased from 78.71 mSv to 29.50 mSv (p < 0.001).</p> <p>Conclusions</p> <p>The radiation dose reduction strategy for CT in severely injured trauma patients effectively decreased the cumulative effective dose of the total CT examinations in the emergency department. But not effectively decreased the number of CT examinations.</p
Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes.
Glaucoma is characterized by a progressive loss of retinal ganglion cells and their axons, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role. However, whether the activation of cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway is associated with astrocyte dysfunction in the ONH remains unknown. We report here that the cAMP/protein kinase A (PKA) pathway is critical to ONH astrocyte dysfunction, leading to caspase-3 activation and cell death via the AKT/Bim/Bax signaling pathway. Furthermore, elevated intracellular cAMP exacerbates vulnerability to oxidative stress in ONH astrocytes, and this may contribute to axonal damage in glaucomatous neurodegeneration. Inhibition of intracellular cAMP/PKA signaling activation protects ONH astrocytes by increasing AKT phosphorylation against oxidative stress. These results strongly indicate that activation of cAMP/PKA pathway has an important role in astrocyte dysfunction, and suggest that modulating cAMP/PKA pathway has therapeutic potential for glaucomatous ONH degeneration
Association of neuromuscular reversal by sugammadex and neostigmine with 90-day mortality after non-cardiac surgery
Abstract
Background
Reversing a neuromuscular blockade agent with sugammadex is known to lessen postoperative complications by reducing postoperative residual curarization. However, its effects on 90-day mortality are unknown. Therefore, this study aimed to compare the effects of sugammadex and neostigmine in terms of 90-day mortality after non-cardiac surgery.
Methods
This retrospective cohort study analyzed the medical records of adult patients aged 18 years or older who underwent non-cardiac surgery at a single tertiary care hospital between 2011 and 2016. Propensity score matching and Cox regression analysis were used to investigate the effectiveness of sugammadex and neostigmine in lowering 90-day mortality after non-cardiac surgery.
Results
A total of 65,702 patients were included in the analysis (mean age: 52.3 years, standard deviation: 15.7), and 23,532 of these patients (35.8%) received general surgery. After propensity score matching, 14,179 patients (3906 patients from the sugammadex group and 10,273 patients from the neostigmine group) were included in the final analysis. Cox regression analysis in the propensity score-matched cohort showed that the risk of 90-day mortality was 40% lower in the sugammadex group than in the neostigmine group (hazard ratio: 0.60, 95% confidence interval: 0.37, 0.98; P = 0.042). These results were similar in the multivariable Cox regression analysis of the entire cohort (hazard ratio: 0.62, 95% confidence interval: 0.39, 0.96; P = 0.036).
Conclusions
This retrospective cohort study suggested that reversing rocuronium with sugammadex might be associated with lower 90-day mortality after non-cardiac surgery compared to neostigmine. However, since this study did not evaluate quantitative neuromuscular function in the postoperative period due to its retrospective design, the results should be interpreted carefully. Future prospective studies with quantitative neuromuscular monitoring in the postoperative period should be performed to confirm these results
One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries
Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries
Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst
Most Li-O-2 batteries suffer from sluggish kinetics during oxygen evolution reactions (OERs). To overcome this drawback, we take the lesson from other catalysis researches that showed improved catalytic activities by employing metal alloy catalysts. Such research effort has led us to find Pt3Co nanoparticles as an effective OER catalyst in Li-O-2 batteries. The superior catalytic activity was reflected in the substantially decreased overpotentials and improved cycling/rate performance compared to those of other catalysts. Density functional theory calculations suggested that the low OER overpotentials are associated with the reduced adsorption strength of LiO2 on the outermost Pt catalytic sites. Also, the alloy catalyst generates amorphous Li2O2 conformally coated around the catalyst and thus facilitates easier decomposition and higher reversibility. This investigation conveys an important message that understanding elementary reactions and surface charge engineering of air-catalysts are one of the most effective approaches in resolving the chronic sluggish charging kinetics in Li-O-2 batteries.
Synergistic nanoarchitecture of mesoporous carbon and carbon nanotubes for lithium-oxygen batteries
A rechargeable lithium–oxygen battery (LOB) operates via the electrochemical formation and decomposition of solid-state Li2O2 on the cathode. The rational design of the cathode nanoarchitectures is thus required to realize high-energy-density and long-cycling LOBs. Here, we propose a cathode nanoarchitecture for LOBs, which is composed of mesoporous carbon (MPC) integrated with carbon nanotubes (CNTs). The proposed design has the advantages of the two components. MPC provides sufficient active sites for the electrochemical reactions and free space for Li2O2 storage, while CNT forests serve as conductive pathways for electron and offer additional reaction sites. Results show that the synergistic architecture of MPC and CNTs leads to improvements in the capacity (~ 18,400 mAh g− 1), rate capability, and cyclability (~ 200 cycles) of the CNT-integrated MPC cathode in comparison with MPC. © 2021, The Author(s).1
- …