186 research outputs found
Recommended from our members
DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES
This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids
Recommended from our members
EFFECTS OF ADDITION RATE AND ACID MATRIX ON THE DESTRUCTION OF AMMONIUM BY THE SEMI-CONTINUOUS ADDITION OF SODIUM NITRITE DURING EVAPORATION
The destruction of ammonium by the semi-continuous addition of sodium nitrite during acidic evaporation can be achieved with a wide range of waste compositions. The efficiency of nitrite utilization for ammonium destruction was observed to vary from less than 20% to 60% depending on operating conditions. The effects of nitric acid concentration and nitrite addition rate are dominant factors that affect the efficiency of nitrite utilization for ammonium destruction. Reducing the acid concentration by performing acid recovery via steam stripping prior to performing nitrite destruction of ammonium will require more nitrite due to the low destruction efficiency. The scale-up of the baseline rate nitrite addition rate from the 100 mL to the 1600 gallon batch size has significant uncertainty and poses the risk of lower efficiency at the plant scale. Experience with plant scale processing will improve confidence in the application of nitrite destruction of ammonium to different waste streams
INTERPRETATION OF AT-LINE SPECTRA FROM AFS-2 BATCH #3 FERROUS SULFAMATE TREATMENT
Spectra from the “at-line” spectrometer were obtained during the ferrous sulfamate (FS) valence adjustment step of AFS-2 Batch #3 on 9/18/2013. These spectra were analyzed by mathematical principal component regression (PCR) techniques to evaluate the effectiveness of this treatment. Despite the complications from Pu(IV), we conclude that all Pu(VI) was consumed during the FS treatment, and that by the end of the treatment, about 85% was as Pu(IV) and about 15% was as Pu(III). Due to the concerns about the “odd” shape of the Pu(IV) peak and the possibility of this behavior being observed in the future, a follow-up sample was sent to SRNL to investigate this further. Analysis of this sample confirmed the previous results and concluded that it “odd” shape was due to an intermediate acid concentration. Since the spectral evidence shows complete reduction of Pu(VI) we conclude that it is appropriate to proceed with processing of this the batch of feed solution for HB-Line including the complexation of the fluoride with aluminum nitrate
Recommended from our members
ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE
Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator
HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX
Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line
Recommended from our members
LITERATURE REVIEW: REDUCTION OF NP(V) TO NP (IV)-ALTERNATIVES TO FERROUS SULFAMATE
The baseline approach to control of Np oxidation in UREX and PUREX separation processes is the reduction of Np(V) and Np(VI) to Np(IV) using ferrous sulfamate. Use of this reagent results in increased sulfur and iron concentrations in the liquid waste streams from the process. Presence of these two elements, especially sulfur, increases the complexity of the development of wasteforms for immobilizing these effluents. Investigations are underway to identify reductants that eliminate sulfur and iron from the Np reduction process. While there are a variety of chemical reductants that will reduce Np to Np(IV) in nitric acid media, the reaction rates for most are so slow that the reductants are not be feasible for use in an operating plant process. In an attempt to identify additional alternatives to ferrous sulfamate, a literature search and review was performed. Based on the results of the literature review, it is concluded that photochemical and catalytic processes should also be investigated to test the utility of these two approaches. The catalytic process could be investigated for use in conjunction with chemical oxidants to speed the reaction rates for reductants that react slowly, but would otherwise be appropriate replacements for ferrous sulfamate. The photochemical approach, which has received little attention during the past few decades, also shows promise, especially the photocatalytic approach that includes a catalyst, such as Pt supported on SiC, which can be used in tandem with an oxidant, for Np reduction
ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE
Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator
Recommended from our members
Oxygen isotopes and trace elements in the Tiva Canyon Tuff, Yucca Mountain and vicinity, Nye County, Nevada
Yucca Mountain is being studied as a potential site for an underground repository for high-level radioactive waste. Because Yucca Mountain is located in a resource-rich geologic setting, one aspect of the site characterization studies is an evaluation of the resource potential at Yucca Mountain. The Tiva Canyon Tuff (TCT) is a widespread felsic ash-flow sheet that is well exposed in the Yucca Mountain area. Samples of the upper part of the TCT were selected to evaluate the potential for economic mineral deposits within the Miocene volcanic section. These samples of the upper cliff and caprock subunits have been analyzed for oxygen isotopes and a large suite of elements. Oxygen isotope compositions ({delta}{sup 18}O) of the TCT are typical of felsic igneous rocks but range from 6.9 to 11.8 permil, indicating some post-depositional alteration. There is no evidence of the low {delta}{sup 18}O values (less than 6 permil) that are typical of epithermal precious-metal deposits in the region. The variation in oxygen isotope ratios is probably the result of deuteric alteration during late-stage crystallization of silica and low-temperature hydration of glassy horizons; these processes are also recorded by the chemical compositions of the rocks. However, most elemental contents in the TCT reflect igneous processes, and the effects of alteration are observed only in some of the more mobile elements. These studies indicate that the TCT at Yucca Mountain has not been affected by large-scale meteoric-water hydrothermal circulation. The chemical compositions of the TCT, especially the low concentrations of most trace elements including typical pathfinder elements, show no evidence for epithermal metal deposits. Together, these data indicate that the potential for economic mineralization in this part of the volcanic section at Yucca Mountain is small
On the Distortion and Warpage of 7249 Aluminum Alloy After Quenching and Machining
The objective of this study is to determine the effect of solution treatment temperature, quenching media, and various machining sequences on the warpage behavior of aluminum 7249 alloy aged to T6 and T7\u27 tempers. Large extrusions of 7249 aluminum alloy with fins were cut into 108 T sections. The samples were solution-treated, aged, and machined. Three solution temperatures (445, 474, and 505 A degrees C), two quenching media (water and 20% polyalkylene glycol), two aging treatments (T6 and T7\u27), and three machine sequences were used. The flatness of the samples was measured on the surfaces orthogonal to the z-axis. Three points were on top of both shoulders (six total), six were at the bottom of the sample, and six were on the top of the fin, in the cases where the fin was not milled off. They were then averaged together by surface to represent the overall warpage of each sample
Recommended from our members
Making and suspension capabilities of vibratory agitators in a slab tank
Seven different vibratory agitators, consisting of single and dual flat blade configurations or dual angle blade configurations, were studied for their ability to produce mixing and solid suspension in a slab tank. The mixing behavior of the various configurations was recorded on video tape, and mixing times were measured as the time needed to disperse injected dye. The solid suspension tests, using ash tray sand, were conducted to determine the minimum stroke frequency of the agitators needed for complete off-bottom suspension. The mixing studies demonstrated that vibratory agitation produced strong vertical fluid motion, good bulk circulation and dispersion in the liquid. The effects of stroke frequency, n; amplitude, a; blade width, w; blade clearance, c; and liquid depth, h, on mixing time, {theta}, were studied. Single blade geometries produced complete mixing in the least number of strokes. The most effective geometry, in terms of both mixing and solid suspension, was a single flat blade with minimum off-bottom clearance and a blade width/tank thickness ratio, w/T, of 0.74 at the maximum stroke amplitude of 51 mm
- …