3 research outputs found

    The development of biofilm architecture

    Get PDF
    We extend the one-dimensional polymer solution theory of bacterial biofilm growth described by Winstanley et al. (2011 Proc. R. Soc. A 467, 1449–1467 (doi:10.1098/rspa.2010.0327)) to deal with the problem of the growth of a patch of biofilm in more than one lateral dimension. The extension is non-trivial, as it requires consideration of the rheology of the polymer phase. We use a novel asymptotic technique to reduce the model to a free-boundary problem governed by the equations of Stokes flow with non-standard boundary conditions. We then consider the stability of laterally uniform biofilm growth, and show that the model predicts spatial instability; this is confirmed by a direct numerical solution of the governing equations. The instability results in cusp formation at the biofilm surface and provides an explanation for the common observation of patterned biofilm architectures

    Brewing of filter coffee

    Get PDF
    We report progress on mathematical modelling of coffee grounds in a drip filter coffee machine. The report focuses on the evolution of the shape of the bed of coffee grounds during extraction with some work also carried out on the chemistry of extraction. This work was sponsored by Philips who are interested in understanding an observed correlation between the final shape of the coffee grounds and the quality of the coffee. We used experimental data gathered by Philips and ourselves to identify regimes in the coffee brewing process and relevant regions of parameter space. Our work makes it clear that a number of separate processes define the shape of the coffee bed depending on the values of the parameters involved e.g. the size of the grains and the speed of fluid flow during extraction. We began work on constructing mathematical models of the redistribution of the coffee grounds specialised to each region and on a model of extraction. A variety of analytic and numerical tools were used. Furthermore our research has progressed far enough to allow us to begin to exploit connections between this problem and other areas of science, in particular the areas of sedimentology and geomorphology, where the processes we have observed in coffee brewing have been studied

    Subglacial hydrology and the formation of ice streams.

    No full text
    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice-water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model
    corecore