530 research outputs found

    Finite element inversion of DInSAR data from the Mw 6.3 L’Aquila earthquake, 2009 (Italy)

    Get PDF
    Fault slip distribution is usually retrieved from geodetic data assuming that the local crust is an elastic, homogeneous and isotropic half‐space. In the last decades spatially dense geodetic data (e.g., DInSAR maps) have highlighted complex patterns of coseismic deformation that require new modeling tools, such as numerical methods, able to represent rheological and geometrical complexities of the Earth’s crust. In this work, we develop a procedure to perform inversion of geodetic data based on the finite element method, accounting for a more realistic description of the local crust. The method is applied to the 2009 L’Aquila earthquake (Mw 6.3), using DInSAR images of the coseismic displacement. Results highlight the non‐negligible influence of the medium structure: homogeneous and heterogeneous models show discrepancies up to 20% in the fault slip distribution values. Furthermore, in the heterogeneous models a new area of slip appears above the hypocenter. We also perform a resolution study, showing that the information about fault slip distributions retrieved from geodetic data should be considered as averaged on surrounding patches

    A Data Fusion Technique to Detect Wireless Network Virtual Jamming Attacks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Wireless communications are potentially exposed to jamming due to the openness of the medium and, in particular, to virtual jamming, which allows more energy-efficient attacks. In this paper we tackle the problem of virtual jamming attacks on IEEE 802.11 networks and present a data fusion solution for the detection of a type of virtual jamming attack (namely, NAV attacks), based on the real-time monitoring of a set of metrics. The detection performance is evaluated in a number of real scenarios

    Unified model for network dynamics exhibiting nonextensive statistics

    Full text link
    We introduce a dynamical network model which unifies a number of network families which are individually known to exhibit qq-exponential degree distributions. The present model dynamics incorporates static (non-growing) self-organizing networks, preferentially growing networks, and (preferentially) rewiring networks. Further, it exhibits a natural random graph limit. The proposed model generalizes network dynamics to rewiring and growth modes which depend on internal topology as well as on a metric imposed by the space they are embedded in. In all of the networks emerging from the presented model we find q-exponential degree distributions over a large parameter space. We comment on the parameter dependence of the corresponding entropic index q for the degree distributions, and on the behavior of the clustering coefficients and neighboring connectivity distributions.Comment: 11 pages 8 fig

    Dilatonic interpolation between Reissner-Nordstrom and Bertotti-Robinson spacetimes with physical consequences

    Full text link
    We give a general class of static, spherically symmetric, non-asymptotically flat and asymptotically non-(anti) de Sitter black hole solutions in Einstein-Maxwell-Dilaton (EMD) theory of gravity in 4-dimensions. In this general study we couple a magnetic Maxwell field with a general dilaton potential, while double Liouville-type potentials are coupled with the gravity. We show that the dilatonic parameters play the key role in switching between the Bertotti-Robinson and Reissner-Nordstr\"om spacetimes. We study the stability of such black holes under a linear radial perturbation, and in this sense we find exceptional cases that the EMD black holes are unstable. In continuation we give a detailed study of the spin-weighted harmonics in dilatonic Hawking radiation spectrum and compare our results with the previously known ones. Finally, we investigate the status of resulting naked singularities of our general solution when probed with quantum test particles.Comment: 27 pages, 4 figures, to appear in CQG

    GEOCHEMICAL CHARACTERIZATION OF NATURAL GAS MANIFESTATIONS IN GREECE

    Get PDF
    The Greek region is characterized by intense geodynamic activity with widespread volcanic, geothermal and seismic activity. Its complex geology is reflected in the large variety of chemical and isotopic composition of its gas manifestations. Basing on their chemical composition the gases can be subdivided in three groups, respectively CO2, CH4 or N2-dominated. On oxygen-free basis these three gases make up more than 97% of the total composition. The only exceptions are fumarolic gases of Nisyros that contain substantial amounts of H2S (up to more than 20%) and one sample of Milos that contains 15% of H2. CO2-dominated gases with clear mantle contribution in their He isotopic composition (R/Ra corrected for air contamination ranging from 0.5 to 5.7) are found along the subduction-related south Aegean active volcanic arc and on the Greek mainland close to recent (upper Miocene to Pleistocene) volcanic centers. These areas are generally characterized by active or recent extensive tectonic activity and high geothermal gradients. On the contrary, gases sampled in the more external nappes of the Hellenide orogen have generally a CH4- or N2-rich compositions and helium isotope composition with a dominant crustal contribution (R/Ra corr < 0.2). The chemical and isotopic characteristics of the emitted gas display therefore a clear relationshipwith the different geodynamic sectors of the region. Gas geochemistry of the area contributes to a better definition of the crust-mantle setting of the Hellenic region

    GEOCHEMICAL CHARACTERIZATION OF NATURAL GAS MANIFESTATIONS IN GREECE

    Get PDF
    The Greek region is characterized by intense geodynamic activity with widespread volcanic, geothermal and seismic activity. Its complex geology is reflected in the large variety of chemical and isotopic composition of its gas manifestations. Basing on their chemical composition the gases can be subdivided in three groups, respectively CO2, CH4 or N2-dominated. On oxygen-free basis these three gases make up more than 97% of the total composition. The only exceptions are fumarolic gases of Nisyros that contain substantial amounts of H2S (up to more than 20%) and one sample of Milos that contains 15% of H2. CO2- dominated gases with clear mantle contribution in their He isotopic composition (R/Ra corrected for air contamination ranging from 0.5 to 5.7) are found along the subduction-related south Aegean active volcanic arc and on the Greek mainland close to recent (upper Miocene to Pleistocene) volcanic centers. These areas are generally characterized by active or recent extensive tectonic activity and high geothermal gradients. On the contrary, gases sampled in the more external nappes of the Hellenide orogen have generally a CH4- or N2-rich compositions and helium isotope composition with a dominant crustal contribution (R/Ra corr < 0.2). The chemical and isotopic characteristics of the emitted gas display therefore a clear relationship with the different geodynamic sectors of the region. Gas geochemistry of the area contributes to a better definition of the crust-mantle setting of the Hellenic region

    PETROLOGICAL CHARACTERS OF THE EARLY CRETACEOUS BOEOTHIAN FLYSCH, (CENTRAL GREECE)

    Get PDF
    This paper is aimed to study the petrographic characters of the Boeothian Flysch, an Early Cretaceous turbidite deposit which marks the boundary between the External/Internal Hellenides in central-southern Greece, in order to define a preliminary palaeogeographic reconstruction of the Pindos segment of the Alpine Tethys. The Boeothian Flysch is mainly made up by basal conglomerates and arenaceous-pelitic lithofacies, locally interlayered with Calpionellid micrite limestones. This formation is here supposed to belong to the Early Cretaceous flysch family, which marks the contact between the internal and external areas along all the western and central European Alpine Chains for more than 7,000 km, from the Gibraltar Arc to the Balkans via the Calabria-Peloritani Arc. Provenance of these flysch is commonly connected to internal areas, mainly made up by Hercynian crystalline basements and, locally, by ophiolitic complexes. The petrographic data obtained from representative sandstones of the Boeothian Flysch suggest a provenance from internal sources, formed by a Jurassic carbonate platform, metamorphic basements and by ophiolitic complexes, which can be identified with the Pelagonian Terranes (Auct.). An Early Cretaceous uplift and rejuvenation processes, probably related to the late Cretaceous tectogenesis, widely recorded in almost all the central-western Alpine Tethis, affected these internal domains with consequent production of abundant detrital supply in the innermost sector of the Pindos Ocean, whose external margin was bounded by the Parnassos microcontinent
    • 

    corecore