913 research outputs found
Recommended from our members
An oesophageal pulse oximetry system utilising a fibre-optic probe
A dual-wavelength fibre-optic pulse oximetry system is described for the purposes of estimating oxygen saturation (SpO2) from the oesophagus. A probe containing miniature right-angled glass prisms was used to record photoplethysmographic (PPG) signals from the oesophageal wall. Signals were recorded successfully in 19 of 20 patients, demonstrating that PPG signals could be reliably obtained from an internal vascularised tissue site such as the oesophageal epithelium. The value of the mean oxygen saturation recorded from the oesophagus was 94.0 ± 4.0%. These results demonstrate that SpO2 may be estimated in the oesophagus using a fibre-optic probe
Recommended from our members
Measuring venous oxygenation using the photoplethysmograph waveform
OBJECTIVE: We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation.
METHODS: Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set.
RESULTS: Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction (p < 0.0071).
CONCLUSIONS: This work introduces new algorithms for PPG analysis. Three algorithms (VenSat, VenInstSat, and RespDC) succeed in detecting lower saturation blood. The next step is to confirm the accuracy of the measurement by comparing them to a gold standard (i.e., venous blood gas)
Recommended from our members
In silico and in vivo investigations using an endocavitary photoplethysmography sensor for tissue viability monitoring
Significance: Colorectal cancer is one of the major causes of cancer-related deaths worldwide. Surgical removal of the cancerous growth is the primary treatment for this disease. A colorectal cancer surgery, however, is often unsuccessful due to the anastomotic failure that may occur following the surgical incision. Prevention of an anastomotic failure requires continuous monitoring of intestinal tissue viability during and after colorectal surgery. To date, no clinical technology exists for the dynamic and continuous monitoring of the intestinal perfusion.
Aim: A dual-wavelength indwelling bowel photoplethysmography (PPG) sensor for the continuous monitoring of intestinal viability was proposed and characterized through a set of in silico and in vivo investigations.
Approach: The in silico investigation was based on a Monte Carlo model that was executed to quantify the variables such as penetration depth and detected intensity with respect to the sensor–tissue separations and tissue perfusion. Utilizing the simulated information, an indwelling reflectance PPG sensor was designed and tested on 20 healthy volunteers. Two sets of in vivo studies were performed using the driving current intensities 20 and 40 mA for a comparative analysis, using buccal tissue as a proxy tissue-site.
Results: Both simulated and experimental results showed the efficacy of the sensor to acquire good signals through the “contact” to a “noncontact” separation of 5 mm. A very slow wavelength-dependent variation was shown in the detected intensity at the normal and hypoxic states of the tissue, whereas a decay in the intensity was found with the increasing submucosal-blood volume. The simulated detected-to-incident-photon-ratio and the experimental signal-to-noise ratio exhibited strong positive correlations, with the Pearson product-moment correlation coefficient R ranging between 0.65 and 0.87.
Conclusions: The detailed feasibility analysis presented will lead to clinical trials utilizing the proposed sensor
Recommended from our members
In vitro quantification of lactate in Phosphate Buffer Saline (PBS) samples.
Continuous measurement of lactate levels in the blood is a prerequisite in intensive care patients who are susceptible to sepsis due to their suppressed immune system and increased metabolic demand. Currently, there exists no noninvasive tool for continuous measurement of lactate in clinical practice. The current mode of measurement is based on arterial blood gas analyzers which require sampling of arterial blood. In this work, we propose the use of Near Infra-Red (NIR) spectroscopy together with multivariate models as a means to non-invasively predict the concentration of lactate in the blood. As the first step towards this objective, we examined the possibility of accurately predicting concentrations of sodium lactate (NaLac) from the NIR spectra of 37 isotonic phosphate buffer saline (PBS) samples containing NaLac ranging from 0 to 20 mmol/L. NIR spectra of PBS samples were collected using the Lambda 1050 dual beam spectrometer over a spectral range of 800 - 2600 nm with a quartz cell of 1 mm optical path. Estimates and calibration of the lactate concentration with the NIR spectra were made using Partial Least-Squares (PLS) regression analysis and leave-one-out cross-validation on filtered spectra. The regression analysis showed a correlation coefficient of 0.977 and a standard error of 0.89 mmol/L between the predicted and prepared samples. The results suggest that NIR spectroscopy together with multivariate models can be a valuable tool for non-invasive assessment of blood lactate concentrations
Recommended from our members
Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO2 sensor
Photoplethysmography (PPG) is a technique widely used to monitor volumetric blood changes induced by cardiac pulsations. Pulse oximetry uses the technique of PPG to estimate arterial oxygen saturation values (SpO2). In poorly perfused tissues, SpO2 readings may be compromised due to the poor quality of the PPG signals. A multimode finger PPG probe that operates simultaneously in reflectance, transmittance and a combined mode called “transreflectance”’ was developed, in an effort to improve the quality of the PPG signals in states of hypoperfusion. Experiments on 20 volunteers were conducted to evaluate the performance of the multimode PPG sensor and compare the results with a commercial transmittance pulse oximeter. A brachial blood pressure cuff was used to induce artificial hypoperfusion. Results showed that the amplitude of the transreflectance AC PPG signals were significantly different (p\0.05) than the AC PPG signals obtained from the other two conventional PPG sensors (reflectance and transmittance). At induced brachial pressures between 90 and 135 mmHg, the reflectance finger pulse oximeter failed 25 times (failure rate 42.2 %) to estimate SpO2 values, whereas the transmittance pulse oximeter failed 8 times (failure rate 15.5 %). The transreflectance pulse oximeter failed only 3 times (failure rate 6.8 %) and the commercial pulse oximeter failed 17 times (failure rate 29.4 %)
Recommended from our members
Filtering techniques for the removal of ventilator artefact in oesophageal pulse oximetry
The oesophagus has been shown to be a reliable site for monitoring blood oxygen saturation (SpO2). However, the photoplethysmographic (PPG) signals from the lower oesophagus are frequently contaminated by a ventilator artefact making the estimation of SpO2 impossible. A 776th order finite impulse response (FIR) filter and a 695th order interpolated finite impulse response (IFIR) filter were implemented to suppress the artefact. Both filters attenuated the ventilator artefact satisfactorily without distorting the morphology of the PPG when processing recorded data from ten cardiopulmonary bypass patients. The IFIR filter was the better since it conformed more closely to the desired filter specifications and allowed real-time processing. The average improvements in signal-to-noise ratio (SNR) achieved by the FIR and IFIR filters for the fundamental component of the red PPG signals with respect to the fundamental component of the artefact were 57.96 and 60.60 dB, respectively. The corresponding average improvements achieved by the FIR and IFIR filters for the infrared PPG signals were 54.83 and 60.96 dB, respectively. Both filters were also compared with their equivalent tenth order Butterworth filters. The average SNR improvements for the FIR and IFIR filters were significantly higher than those for the Butterworth filters
Proof-of-principle validation of a novel intraluminal optical sensor for dynamic monitoring of intestinal anastomosis: An in vivo animal model case study
Intestinal resections are commonly performed to treat different colorectal conditions, including colorectal cancer. A successful primary anastomosis is the desired optimal outcome after intestinal resection. Maintaining adequate blood flow across the anastomosis is paramount for reducing anastomotic failure. Currently, there are no clinical devices capable of continuously assessing blood flow and blood perfusion at an anastomosis during and after surgery. The aim of this study was to develop an indwelling optical sensor for the monitoring of perfusion biomarkers using photoplethysmography and near-infrared spectroscopy principles. In an animal in-vivo proof-of-principle study, it was found that the developed sensor performed appropriately for the assessment of blood flow and perfusion in an anastomosis, showing changes in the assessed parameters after gradual devascularization of the transected bowel
Recommended from our members
In vivo investigation of ear canal pulse oximetry during hypothermia
Pulse oximeters rely on the technique of photoplethysmography (PPG) to estimate arterial oxygen saturation (SpO(Formula presented.)). In conditions of poor peripheral perfusion such as hypotension, hypothermia, and vasoconstriction, the PPG signals detected are often weak and noisy, or in some cases unobtainable. Hence, pulse oximeters produce erroneous SpO(Formula presented.) readings in these circumstances. The problem arises as most commercial pulse oximeter probes are designed to be attached to peripheral sites such as the finger or toe, which are easily affected by vasoconstriction. In order to overcome this problem, the ear canal was investigated as an alternative site for measuring reliable SpO(Formula presented.) on the hypothesis that blood flow to this central site is preferentially preserved. A novel miniature ear canal PPG sensor was developed along with a state of the art PPG processing unit to investigate PPG measurements from the bottom surface of the ear canal. An in vivo study was carried out in 15 healthy volunteers to validate the developed technology. In this comparative study, red and infrared PPGs were acquired from the ear canal and the finger of the volunteers, whilst they were undergoing artificially induced hypothermia by means of cold exposure (10 (Formula presented.)C). Normalised Pulse Amplitude (NPA) and SpO(Formula presented.) was calculated from the PPG signals acquired from the ear canal and the finger. Good quality baseline PPG signals with high signal-to-noise ratio were obtained from both the PPG sensors. During cold exposure, significant differences were observed in the NPA of the finger PPGs. The mean NPA of the red and infrared PPGs from the finger have dropped by >80%. Contrary to the finger, the mean NPA of red and infrared ear canal PPGs had dropped only by 0.2 and 13% respectively. The SpO(Formula presented.)s estimated from the finger sensor have dropped below 90% in five volunteers (failure) by the end of the cold exposure. The ear canal sensor, on the other hand, had only failed in one volunteer. These results strongly suggest that the ear canal may be used as a suitable alternative site for monitoring PPGs and arterial blood oxygen saturation at times were peripheral perfusion is compromised
Recommended from our members
Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions
Photoplethysmography (PPG) is an optical technique that measures blood volume variations. The main application of dual-wavelength PPG is pulse oximetry, in which the arterial oxygen saturation (SpO[Formula: see text]) is calculated noninvasively. However, the PPG waveform contains other significant physiological information that can be used in conjunction to SpO[Formula: see text] for the assessment of oxygenation and blood volumes changes. This paper investigates the use of near infrared spectroscopy (NIRS) processing techniques for extracting relative concentration changes of oxygenated ([Formula: see text]HbO[Formula: see text]), reduced ([Formula: see text]HHb) and total haemoglobin ([Formula: see text]tHb) from dual-wavelength PPG signals during intermittent pressure-increasing vascular occlusions. A reflectance PPG sensor was attached on the left forearm of nineteen (n = 19) volunteers, along with a reference NIRS sensor positioned on the same forearm, above the left brachioradialis. The investigation protocol consisted of seven intermittent and pressure-increasing vascular occlusions. Relative changes in haemoglobin concentrations were obtained by applying the modified Beer-Lambert law to PPG signals, while oxygenation changes were estimated by the difference between red and infrared attenuations of DC PPGs (A[Formula: see text] = [Formula: see text]A[Formula: see text] - [Formula: see text]A[Formula: see text]) and by the conventional SpO[Formula: see text]. The [Formula: see text]HbO[Formula: see text], [Formula: see text]HHb, [Formula: see text]tHb from the PPG signals indicated significant changes in perfusion induced by either partial and complete occlusions (p < 0.05). The trends in the variables extracted from PPG showed good correlation with the same parameters measured by the reference NIRS monitor. Bland and Altman analysis of agreement between PPG and NIRS showed underestimation of the magnitude of changes by the PPG. A[Formula: see text] indicated significant changes for occlusion pressures exceeding 20 mmHg (p < 0.05) and correlation with tissue oxygenation changes measured by NIRS, while SpO[Formula: see text] had significant changes after 40 mmHg (p < 0.05). Relative changes in haemoglobin concentrations can be estimated from PPG signals and they showed a good level of accuracy in the detection of perfusion and oxygenation changes induced by different degrees of intermittent vascular occlusions. These results can open up to new applications of the PPG waveform in the detection of blood volumes and oxygenation changes
- …