34 research outputs found

    Gateway diversity for a future high throughput satellite system

    Get PDF
    The continuous increase of traffic demands for satellite networks motivates the evolution of the telecommunication satellite technology towards wider channels and multiple beam operation with frequency re-use across the coverage. This is made possible by the use of higher frequency bands. Recent research projects 1,2 have investigated multi-beam coverages with more than 200 user beams operated in Ka band, to offer very large data throughputs over Europe. Since 2012, the European Commission project Broadband Access via integrated Terrestrial and Satellite systems (BATS) has explored a similar concept based on a dual satellite solution offering around 302 user beams over EU27 and Turkey, targeting 2020 timeframe, see Figure 1. In all these systems, so as to maximize the user link capacity, the whole civil band allocated to Fixed Satellite Services (FSS) in Ka band (20/30 GHz) is dedicated to the user links. The feeder links thus have to be operated in another band. An attractive option is to rely on Q/V bands (30/40 GHz) to provide the gateway-to-satellite links. Despite the large available bandwidths in Q/V band (5 GHz in each direction), the very large user aggregated bandwidths are required to implement several tens of gateways to provide the necessary capacity

    On the gateway diversity for high throughput broadband satellite systems

    No full text

    On the small scale modelling aspects of dual circular polarised land mobile satellite MIMO channels in line of sight and in vehicles

    Get PDF
    A new modelling method suited to the dual circular polarised (MIMO) channel applicable to land mobile satellite (LMS) communications in line of sight cases is presented. In this scenario, it is necessary to apply correlated fading to the co-polarised and cross- polarised channels separately in order to model the evident polarization multiplexing in such channels found from measurement data. Comparisons between model and measured data for satellite elevations of 30o are presented for validation. Influence of the vehicle interior on the channel model is also analysed

    On the small scale modelling aspects of dual circular polarised land mobile satellite MIMO channels in line of sight and in vehicles

    No full text
    A new modelling method suited to the dual circular polarised (MIMO) channel applicable to land mobile satellite (LMS) communications in line of sight cases is presented. In this scenario, it is necessary to apply correlated fading to the co-polarised and cross- polarised channels separately in order to model the evident polarization multiplexing in such channels found from measurement data. Comparisons between model and measured data for satellite elevations of 30o are presented for validation. Influence of the vehicle interior on the channel model is also analysed

    On the gateway diversity for high throughput broadband satellite systems

    No full text
    corecore