49 research outputs found

    Polarization Dependence Suppression of Optical Fiber Grating Sensor in a π-Shifted Sagnac Loop Interferometer

    Get PDF
    In the sensing applications of optical fiber grating, it is necessary to reduce the transmission-type polarization dependence to isolate the sensing parameter. It is experimentally shown that the polarization-dependent spectrum of acousto-optic long-period fiber grating sensors can be suppressed in the transmission port of a π-shifted Sagnac loop interferometer. General expressions for the transmittance and reflectance are derived for transmission-type, reflection-type, and partially reflecting/transmitting-type polarization-dependent optical devices. The compensation of polarization dependence through the counter propagation in the Sagnac loop interferometer is quantitatively measured for a commercial in-line polarizer and an acousto-optic long-period fiber grating sensor

    A Case of Postprandial Hypotension in the Intensive Care Unit Treated With Acarbose

    Get PDF
    Postprandial hypotension (PPH) has not been described as a cause of hypotension after the return of spontaneous circulation (ROSC) in the intensive care unit (ICU). A 74 year old man underwent cardiopulmonary resuscitation (CPR) due to monomorphic ventricular tachycardia. After the ROSC, inotropic agents were not reduced but increased. PPH had occurred, according to the flow sheet, so a provocation test was performed. We noted hypotension but no serum hypoglycemia or tachycardia. The hypotension was diagnosed as PPH. We chose acarbose for treatment; thus, the inotropic agents were discontinued. This is the first case in which hypotension occurred in a patient recovering after CPR in the ICU and that the PPH was treated with acarbose. PPH should be considered and treated to manage hypotension in elderly patients in the ICU

    Urachal Actinomycosis Mimicking a Urachal Tumor

    Get PDF
    A 26-year-old man presented with lower abdominal discomfort and a palpable mass in the right lower quadrant. An abdominal computed tomography (CT) scan revealed an abdominal wall mass that extended from the dome of the bladder. Fluorine-18 fluorodeoxyglucose (FDG) positron-emission tomography/CT (PET/CT) showed hypermetabolic wall thickening around the bladder dome area that extended to the abdominal wall and hypermetabolic mesenteric infiltration. Differential diagnosis included a urachal tumor with invasion into adjacent organs and chronic inflammatory disease. Partial cystectomy with abdominal wall mass excision was performed, and the final pathologic report was consistent with urachal actinomycosis

    A portable high-intensity focused ultrasound system for the pancreas with 3D electronic steering: a preclinical study in a swine model

    Get PDF
    Purpose The aim of this animal study was to evaluate the safety and feasibility of a portable, ultrasonography-guided, high-intensity focused ultrasound (USg-HIFU) system to treat the pancreas. Methods Eight swine were included. Using a portable HIFU device (ALPIUS 900, Alpinion Medical Systems), ablations were performed on the pancreas in vivo. Different acoustic intensities were applied (1.7 kW/cm2 or 1.5 kW/cm2, n=2 [group A for a pilot study]; 1.5 kW/ cm2, n=3 [group B]; and 1.2 kW/cm2, n=3 [group C]). Magnetic resonance imaging (MRI) was performed immediately (group A) or 7 days (groups B and C) after HIFU treatment. In groups B and C, serum amylase and lipase levels were measured on days 0 and 7, and performance status was observed every day. Necropsy was performed on days 0 (group A) or 7 (groups B and C) to assess the presence of unintended injuries and to obtain pancreatic and peripancreatic tissue for histological analysis. Results Ablation was noted in the pancreas in all swine on MRI, and all pathologic specimens showed coagulation necrosis in the treated area. The mean ablation areas on MRI were 85.3±38.1 mm2, 90.7±21.2 mm2, and 54.4±30.6 mm2 in groups A, B, and C, respectively (P>0.05). No animals showed evidence of complications, except for one case of a pseudocyst in group B. Conclusion This study showed that pancreas ablation using a portable USg-HIFU system may be safe and feasible, and that coagulation necrosis of the pancreas was successfully achieved with a range of acoustic intensities

    A Glycoengineered Interferon-β Mutein (R27T) Generates Prolonged Signaling by an Altered Receptor-Binding Kinetics

    Get PDF
    The glycoengineering approach is used to improve biophysical properties of protein-based drugs, but its direct impact on binding affinity and kinetic properties for the glycoengineered protein and its binding partner interaction is unclear. Type I interferon (IFN) receptors, composed of IFNAR1 and IFNAR2, have different binding strengths, and sequentially bind to IFN in the dominant direction, leading to activation of signals and induces a variety of biological effects. Here, we evaluated receptor-binding kinetics for each state of binary and ternary complex formation between recombinant human IFN-β-1a and the glycoengineered IFN-β mutein (R27T) using the heterodimeric Fc-fusion technology, and compared biological responses between them. Our results have provided evidence that the additional glycan of R27T, located at the binding interface of IFNAR2, destabilizes the interaction with IFNAR2 via steric hindrance, and simultaneously enhances the interaction with IFNAR1 by restricting the conformational freedom of R27T. Consequentially, altered receptor-binding kinetics of R27T in the ternary complex formation led to a substantial increase in strength and duration of biological responses such as prolonged signal activation and gene expression, contributing to enhanced anti-proliferative activity. In conclusion, our findings reveal N-glycan at residue 25 of R27T is a crucial regulator of receptor-binding kinetics that changes biological activities such as long-lasting activation. Thus, we believe that R27T may be clinically beneficial for patients with multiple sclerosis

    Machine Learning to Identify Psychomotor Behaviors of Delirium for Patients in Long-Term Care Facility

    Full text link
    This study aimed to develop accurate and explainable machine learning models for three psychomotor behaviors of delirium for hospitalized adult patients. A prospective pilot study was conducted with 33 participants admitted to a long-term care facility between August 10 and 25, 2020. During the pilot study, we collected 560 cases that included 33 clinical variables and the survey items from the short confusion assessment method (S-CAM), and developed a mobile-based application. Multiple machine learning algorithms, including four rule-mining algorithms (C4.5, CBA, MCAR, and LEM2) and four other statistical learning algorithms (LR, ANNs, SVMs with three kernel functions, and random forest), were validated by paired Wilcoxon signed-rank tests on both macro-averaged F1 and weighted average F1-measures during the 10-times stratified 2-fold cross-validation. The LEM2 algorithm achieved the best prediction performance (macro-averaged F1-measure of 49.35%; weighted average F1-measure of 96.55%), correctly identifying adult patients at delirium risk. In the pairwise comparison between predictive powers observed from independent models, the LEM2 model showed a medium or large effect size between 0.4925 and 0.8766 when compared with LR, ANN, SVM with RBF, and MCAR models. We have confirmed that acute consciousness in S-CAM assessment is closely associated with different predictors for screening three psychomotor behaviors of delirium: 1) education level, dementia type or its level, sleep disorder, dehydration, and infection in mixed-type delirium; 2) gender, education level, dementia type, dehydration, bedsores, and foley catheter in hyperactive delirium; and 3) pain, sleep disorder, and haloperidol use in hypoactive delirium. AuthorTRU

    Design of the RFID for Storage of Biological Information

    Full text link
    Recent advances in RFID (radio frequency identification) technology promises to create a wireless circuitry capable of interfacing with biological systems for acquisition, identification and processing of biological data based on radio frequency interaction. Thus, the RFID tag can be attached not only to consumer products and form part of the supply chain, but also to animals, plants and in particular human body. This paper describes the strategy for the design of a novel RFID tag, which stores vital biological information such as body temperature and blood pressure and heartbeat in accordance with the EPC global Class-1 standard. Biological data is obtained from a sensor technology that is based on resistance deviation-to-pulse width converter. The integrated chip consists of an analog front end, command interpreter, collision avoidance block, data storage, sensors, and interface circuitry. The system is capable of supporting heartbeats in the range of 40~200 beats per a minute and blood pressure 0~300mmHg. The proposed system employs collision free algorithm that supports access to single tag within a multiple tag environment. The approach facilitates intelligent management of patients in hospitals as part of an integrated healthcare management system
    corecore