12 research outputs found

    Analysis of cattle olfactory subgenome: the first detail study on the characteristics of the complete olfactory receptor repertoire of a ruminant

    Get PDF
    BACKGROUND: Mammalian olfactory receptors (ORs) are encoded by the largest mammalian multigene family. Understanding the OR gene repertoire in the cattle genome could lead to link the effects of genetic differences in these genes to variations in olfaction in cattle. RESULTS: We report here a whole genome analysis of the olfactory receptor genes of Bos taurus using conserved OR gene-specific motifs and known OR protein sequences from diverse species. Our analysis, using the current cattle genome assembly UMD 3.1 covering 99.9% of the cattle genome, shows that the cattle genome contains 1,071 OR-related sequences including 881 functional, 190 pseudo, and 352 partial OR sequences. The OR genes are located in 49 clusters on 26 cattle chromosomes. We classified them into 18 families consisting of 4 Class I and 14 Class II families and these were further grouped into 272 subfamilies. Comparative analyses of the OR genes of cattle, pigs, humans, mice, and dogs showed that 6.0% (n = 53) of functional OR cattle genes were species-specific. We also showed that significant copy number variations are present in the OR repertoire of the cattle from the analysis of 10 selected OR genes. CONCLUSION: Our analysis revealed the almost complete OR gene repertoire from an individual cattle genome. Though the number of OR genes were lower than in pigs, the analysis of the genetic system of cattle ORs showed close similarities to that of the pig

    SpiroESTdb: a transcriptome database and online tool for sparganum expressed sequences tags

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sparganum (plerocercoid of <it>Spirometra erinacei</it>) is a parasite that possesses the remarkable ability to survive by successfully modifying its physiology and morphology to suit various hosts and can be found in various tissues, even the nervous system. However, surprisingly little is known about the molecular function of genes that are expressed during the course of the parasite life cycle. To begin to decipher the molecular processes underlying gene function, we constructed a database of expressed sequence tags (ESTs) generated from sparganum.</p> <p>Findings</p> <p>SpiroESTdb is a web-based information resource that is built upon the annotation and curation of 5,655 ESTs data. SpiroESTdb provides an integrated platform for expressed sequence data, expression dynamics, functional genes, genetic markers including single nucleotide polymorphisms and tandem repeats, gene ontology and KEGG pathway information. Moreover, SpiroESTdb supports easy access to gene pages, such as (i) curation and query forms, (ii) <it>in </it><it>silico </it>expression profiling and (iii) BLAST search tools. Comprehensive descriptions of the sparganum content of all sequenced data are available, including summary reports. The contents of SpiroESTdb can be viewed and downloaded from the web (<url>http://pathod.cdc.go.kr/spiroestdb</url>).</p> <p>Conclusions</p> <p>This integrative web-based database of sequence data, functional annotations and expression profiling data will serve as a useful tool to help understand and expand the characterization of parasitic infections. It can also be used to identify potential industrial drug targets and vaccine candidate genes.</p

    The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome

    No full text
    Abstract Background Insects and animals can recognize surrounding environments by detecting thousands of chemical odorants. Olfaction is a complicated process that begins in the olfactory epithelium with the specific binding of volatile odorant molecules to dedicated olfactory receptors (ORs). OR proteins are encoded by the largest gene superfamily in the mammalian genome. Results We report here the whole genome analysis of the olfactory receptor genes of S. scrofa using conserved OR gene specific motifs and known OR protein sequences from diverse species. We identified 1,301 OR related sequences from the S. scrofa genome assembly, Sscrofa10.2, including 1,113 functional OR genes and 188 pseudogenes. OR genes were located in 46 different regions on 16 pig chromosomes. We classified the ORs into 17 families, three Class I and 14 Class II families, and further grouped them into 349 subfamilies. We also identified inter- and intra-chromosomal duplications of OR genes residing on 11 chromosomes. A significant number of pig OR genes (n = 212) showed less than 60% amino acid sequence similarity to known OR genes of other species. Conclusion As the genome assembly Sscrofa10.2 covers 99.9% of the pig genome, our analysis represents an almost complete OR gene repertoire from an individual pig genome. We show that S. scrofa has one of the largest OR repertoires, suggesting an expansion of OR genes in the swine genome. A significant number of unique OR genes in the pig genome may suggest the presence of swine specific olfactory stimulation.</p
    corecore