48 research outputs found

    Active illumination using a digital micromirror device for quantitative phase imaging

    Full text link
    We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution two-dimensional synthetic aperture phase image and a three-dimensional refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination control capability of the proposed method by imaging colloidal spheres and biological cells, including a human red blood cell and a HeLa cell
    corecore