86 research outputs found

    Efficacy of Corrected Rapid Turnover Protein Increment Index (CRII) for Early Detection of Improvement of Nutrition Status in Patients with Malnutrition

    Get PDF
    Serum prealbumin level is useful for assessment of changes in nutritional status but it is markedly affected by the inflammation. In this study, we examined the efficacy of the corrected rapid turnover protein increment index (CRII) for prealbumin, which is calculated as [prealbumin level/C-reactive protein (CRP) level on the assessment day]/[prealbumin level/CRP level on the day of starting nutritional care], for prediction of improvement of nutritional status in patients with malnutrition. The subjects were 50 hospitalized patients with low albuminemia, who were receiving nutritional care. Serum concentrations of albumin, prealbumin and CRP were measured every week for 5 weeks. We defined patients whose serum albumin level was elevated by more than 0.2 g/dl after 5 weeks as those showing improved nutritional status. There was a significant difference in the prealbumin level between improved and unimproved patients at 5 weeks after the start of nutritional support. On the other hand, the prealbumin CRII value showed a significant difference between the groups at 1 and 2 weeks after the start of nutritional support. In conclusion, assessment of prealbumin CRII is useful for early prediction of improved nutritional status in patients with malnutrition

    Detection of Pathologic Heart Murmurs Using a Piezoelectric Sensor

    Get PDF
    This study aimed to evaluate the capability of a piezoelectric sensor to detect a heart murmur in patients with congenital heart defects. Heart sounds and murmurs were recorded using a piezoelectric sensor and an electronic stethoscope in healthy neonates (n = 9) and in neonates with systolic murmurs caused by congenital heart defects (n = 9) who were born at a hospital. Signal data were digitally filtered by high-pass filtering, and the envelope of the processed signals was calculated. The amplitudes of systolic murmurs were evaluated using the signal-to-noise ratio and compared between healthy neonates and those with congenital heart defects. In addition, the correlation between the amplitudes of systolic murmurs recorded by the piezoelectric sensor and electronic stethoscope was determined. The amplitudes of systolic murmurs detected by the piezoelectric sensor were significantly higher in neonates with congenital heart defects than in healthy neonates (p < 0.01). Systolic murmurs recorded by the piezoelectric sensor had a strong correlation with those recorded by the electronic stethoscope (rho = 0.899 and p < 0.01, respectively). The piezoelectric sensor can detect heart murmurs objectively. Mechanical improvement and automatic analysis algorithms are expected to improve recording in the future

    Stromal interaction molecule 1 haploinsufficiency causes maladaptive response to pressure overload

    Get PDF
    Stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum Ca2+ sensor, has been shown to control a Ca2+- dependent signal that promotes cardiac hypertrophy. However, whether STIM1 has adaptive role that helps to protect against cardiac overload stress remains unknown. We hypothesized that STIM1 deficiency causes a maladaptive response to pressure overload stress. We investigated STIM1 heterozygous KO (STIM1(+/)-) mice hearts, in which STIM1 protein levels decreased to 27% of wild-type (WT) with no compensatory increase in STIM2. Under stress-free conditions, no significant differences were observed in electrocardiographic and echocardiographic parameters or blood pressure between STIM1(+/)-and WT mice. However, when STIM1(+/)-mice were subjected to transverse aortic constriction (TAC), STIM1(+/-) mice had a higher mortality rate than WT mice. The TAC-induced increase in the heart weight to body weight ratio (mean mg/g +/- standard error of the mean) was significantly inhibited in STIM1(+/-) mice (WT sham, 4.12 +/- 0.14; WT TAC, 6.23 +/- 0.40; STIM1(+/-) sham, 4.53 +/- 0.16; STIM1(+/-) TAC, 4.63 +/- 0.08). Reverse transcription- polymerase chain reaction analysis of the left ventricles of TAC-treated STIM1(+/-) mice showed inhibited induction of cardiac fetal genes, including those encoding brain and atrial natriuretic proteins. Western blot analysis showed upregulated expression of transient receptor potential channel 1 (TRPC1) in TAC-treated WT mice, but suppressed expression in TAC-treated STIM1(+/-) mice. Taken together, the hearts of STIM1 haploinsufficient mice had a superficial resemblance to the WT phenotype under stress-free conditions; however, STIM1 haploinsufficient mice showed a maladaptive response to cardiac pressure overload

    Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging

    No full text
    Subjective symptoms associated with eosinophilic esophagitis (EoE), such as dysphagia, are not specific, thus the endoscopic identification of suggestive EoE findings is quite important for facilitating endoscopic biopsy sampling. However, poor inter-observer agreement among endoscopists regarding diagnosis has become a complicated issue, especially with inexperienced practitioners. Therefore, we constructed a computer-assisted diagnosis (CAD) system using a convolutional neural network (CNN) and evaluated its performance as a diagnostic utility. A CNN-based CAD system was developed based on ResNet50 architecture. The CNN was trained using a total of 1192 characteristic endoscopic images of 108 patients histologically proven to be in an active phase of EoE (≥15 eosinophils per high power field) as well as 1192 normal esophagus images. To evaluate diagnostic accuracy, an independent test set of 756 endoscopic images from 35 patients with EoE and 96 subjects with a normal esophagus was examined with the constructed CNN. The CNN correctly diagnosed EoE in 94.7% using a diagnosis per image analysis, with an overall sensitivity of 90.8% and specificity of 96.6%. For each case, the CNN correctly diagnosed 37 of 39 EoE cases with overall sensitivity and specificity of 94.9% and 99.0%, respectively. These findings indicate the usefulness of CNN for diagnosing EoE, especially for aiding inexperienced endoscopists during medical check-up screening

    Detection of Pathologic Heart Murmurs Using a Piezoelectric Sensor

    No full text
    This study aimed to evaluate the capability of a piezoelectric sensor to detect a heart murmur in patients with congenital heart defects. Heart sounds and murmurs were recorded using a piezoelectric sensor and an electronic stethoscope in healthy neonates (n = 9) and in neonates with systolic murmurs caused by congenital heart defects (n = 9) who were born at a hospital. Signal data were digitally filtered by high-pass filtering, and the envelope of the processed signals was calculated. The amplitudes of systolic murmurs were evaluated using the signal-to-noise ratio and compared between healthy neonates and those with congenital heart defects. In addition, the correlation between the amplitudes of systolic murmurs recorded by the piezoelectric sensor and electronic stethoscope was determined. The amplitudes of systolic murmurs detected by the piezoelectric sensor were significantly higher in neonates with congenital heart defects than in healthy neonates (p &lt; 0.01). Systolic murmurs recorded by the piezoelectric sensor had a strong correlation with those recorded by the electronic stethoscope (ρ = 0.899 and p &lt; 0.01, respectively). The piezoelectric sensor can detect heart murmurs objectively. Mechanical improvement and automatic analysis algorithms are expected to improve recording in the future
    corecore